564 research outputs found
Selecting background galaxies in weak-lensing analysis of galaxy clusters
In this paper, we present a new method to select the faint, background
galaxies used to derive the mass of galaxy clusters by weak lensing.
The method is based on the simultaneous analysis of the shear signal, that
should be consistent with zero for the foreground, unlensed galaxies, and of
the colors of the galaxies: photometric data from the COSMic evOlution Survey
are used to train the color selection. In order to validate this methodology,
we test it against a set of state-of-the-art image simulations of mock galaxy
clusters in different redshift [] and mass
[] ranges, mimicking medium-deep multicolor
imaging observations (e.g. SUBARU, LBT).
The performance of our method in terms of contamination by unlensed sources
is comparable to a selection based on photometric redshifts, which however
requires a good spectral coverage and is thus much more observationally
demanding. The application of our method to simulations gives an average ratio
between estimated and true masses of . As a further test,
we finally apply our method to real data, and compare our results with other
weak lensing mass estimates in the literature: for this purpose we choose the
cluster Abell 2219 (), for which multi-band (BVRi) data are publicly
available.Comment: MNRAS, Accepted 2016 February 2
Synergistic effects of zinc borate and aluminiumtrihydroxide on flammability behaviour of aerospaceepoxy system
The flame retardancy of mono-component epoxy resin (RTM6), widely used for aerospace composites, treated with zinc borate (ZB), aluminium trihydroxide (ATH) and their mixtures at different concentrations have been investigated by morphological and thermal characterization. Cone calorimeter data reveal that combustion behaviour, heat release rate peak (PHRR) and heat release rate average (HRR Average) of RTM6 resin decrease substantially when synergistic effects of zinc borate and aluminium trihydroxide intervene. Thermogravimetric (TGA) results and analysis of the residue show that addition higher than 20% w/w of ZB, ATH, and their mixture greatly promotes RTM6 char formation acting as a barrier layer for the fire development. Depending upon the different used flame additives, SEM micrographs indicate that the morphology of residual char could vary from a compact amalgam-like structure, for the RTM6+ZB system, to a granular structure, characterized by very small particles of degraded resin and additive for the AT
Feasibility of low energy radiative capture experiments at the LUNA underground accelerator facility
The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been
designed to study nuclear reactions of astrophysical interest. It is located
deep underground in the Gran Sasso National Laboratory, Italy. Two
electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination
with solid and gas target setups allowed to measure the total cross sections of
the radiative capture reactions H(p,)3He and
N(p,)O within their relevant Gamow peaks. We report on
the gamma background in the Gran Sasso laboratory measured by germanium and
bismuth germanate detectors, with and without an incident proton beam. A method
to localize the sources of beam induced background using the Doppler shift of
emitted gamma rays is presented. The feasibility of radiative capture studies
at energies of astrophysical interest is discussed for several experimental
scenarios.Comment: Submitted to Eur. Phys. J.
Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA
The production of the stable isotope Li-6 in standard Big Bang
nucleosynthesis has recently attracted much interest. Recent observations in
metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true,
this plateau would come in addition to the well-known Spite plateau of Li-7
abundances and would point to a predominantly primordial origin of Li-6,
contrary to the results of standard Big Bang nucleosynthesis calculations.
Therefore, the nuclear physics underlying Big Bang Li-6 production must be
revisited. The main production channel for Li-6 in the Big Bang is the
2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced
effects in a high-purity germanium detector that were encountered in a new
study of this reaction. In the experiment, an {\alpha}-beam from the
underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium
gas target are used. A low neutron flux is induced by energetic deuterons from
elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the
ultra-low laboratory neutron background at LUNA, the effect of this weak flux
of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been
studied in detail. Data have been taken at 280 and 400 keV alpha-beam energy
and for comparison also using an americium-beryllium neutron source.Comment: Submitted to EPJA; 13 pages, 8 figure
A weak lensing analysis of the PLCK G100.2-30.4 cluster
We present a mass estimate of the Planck-discovered cluster PLCK G100.2-30.4,
derived from a weak lensing analysis of deep SUBARU griz images. We perform a
careful selection of the background galaxies using the multi-band imaging data,
and undertake the weak lensing analysis on the deep (1hr) r-band image. The
shape measurement is based on the KSB algorithm; we adopt the PSFex software to
model the Point Spread Function (PSF) across the field and correct for this in
the shape measurement. The weak lensing analysis is validated through extensive
image simulations. We compare the resulting weak lensing mass profile and total
mass estimate to those obtained from our re-analysis of XMM-Newton
observations, derived under the hypothesis of hydrostatic equilibrium. The
total integrated mass profiles are in remarkably good agreement, agreeing
within 1 across their common radial range. A mass is derived for the cluster from our weak lensing
analysis. Comparing this value to that obtained from our reanalysis of
XMM-Newton data, we obtain a bias factor of (1-b) = 0.8 0.1. This is
compatible within 1 with the value of (1-b) obtained by Planck
Collaboration XXIV from their calibration of the bias factor using
newly-available weak lensing reconstructed masses.Comment: 11 pages, 12 figures, accepted for publication on Astronomy &
Astrophysics; updates in affiliation
First Direct Measurement of the ^{17}O(p,\gamma)^{18}F Reaction Cross-Section at Gamow Energies for Classical Novae
Classical novae are important contributors to the abundances of key isotopes,
such as the radioactive ^{18}F, whose observation by satellite missions could
provide constraints on nucleosynthesis models in novae. The
^{17}O(p,\gamma)^{18}F reaction plays a critical role in the synthesis of both
oxygen and fluorine isotopes but its reaction rate is not well determined
because of the lack of experimental data at energies relevant to novae
explosions. In this study, the reaction cross section has been measured
directly for the first time in a wide energy range Ecm = 200 - 370 keV
appropriate to hydrogen burning in classical novae. In addition, the E=183 keV
resonance strength, \omega \gamma=1.67\pm0.12 \mueV, has been measured with the
highest precision to date. The uncertainty on the ^{17}O(p,\gamma)^{18}F
reaction rate has been reduced by a factor of 4, thus leading to firmer
constraints on accurate models of novae nucleosynthesis.Comment: accepted by Phys. Rev. Let
Measurement of 25Mg(p; gamma)26Al resonance strengths via gamma spectrometry
The COMPTEL instrument performed the first mapping of the 1.809 MeV photons
in the Galaxy, triggering considerable interest in determing the sources of
interstellar 26Al. The predicted 26Al is too low compared to the observation,
for a better understanding more accurate rates for the 25Mg(p; gamma)26Al
reaction are required. The 25Mg(p;gamma)26Al reaction has been investigated at
the resonances at Er= 745; 418; 374; 304 keV at Ruhr-Universitat-Bochum using a
Tandem accelerator and a 4piNaI detector. In addition the resonance at Er = 189
keV has been measured deep underground laboratory at Laboratori Nazionali del
Gran Sasso, exploiting the strong suppression of cosmic background. This low
resonance has been studied with the 400 kV LUNA accelerator and a HPGe
detector. The preliminary results of the resonance strengths will be reported.Comment: Accepted for publication in Journal of Physics
Preparation and characterisation of isotopically enriched TaO targets for nuclear astrophysics studies
The direct measurement of reaction cross sections at astrophysical energies
often requires the use of solid targets of known thickness, isotopic
composition, and stoichiometry that are able to withstand high beam currents
for extended periods of time. Here, we report on the production and
characterisation of isotopically enriched TaO targets for the study of
proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics
facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared
by anodisation of tantalum backings in enriched water (up to 66% in O
and up to 96% in O). Special care was devoted to minimising the presence
of any contaminants that could induce unwanted background reactions with the
beam in the energy region of astrophysical interest. Results from target
characterisation measurements are reported, and the conclusions for proton
capture measurements with these targets are drawn.Comment: accepted to EPJ
- …
