8,305 research outputs found

    Vortex-loop calculation of the specific heat of superfluid ^{4}He under pressure.

    Get PDF
    Vortex-loop renormalization is used to compute the specific heat of superfluid ^{4}He near the lambda point at various pressures up to 26 bars. The input parameters are the pressure dependence of T_{λ} and the superfluid density, which determine the nonuniversal parameters of the vortex core energy and core size. The results for the specific heat are found to be in good agreement with experimental data, matching the expected universal pressure dependence to within about 5%. The nonuniversal critical amplitude of the specific heat is found to be in reasonable agreement, a factor of four larger than the experiments. We point out problems with recent Gross-Pitaevskii simulations that claimed the vortex-loop percolation temperature did not match the critical temperature of the superfluid phase transition

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Early Social Interaction: A Case Comparison of Developmental Pragmatics and Psychoanalytic Theory

    Get PDF
    This book brings together various threads of the research work I have been involved with over a number of years. This research is based on a longitudinal video recorded study of one ofmydaughters as shewas learning howto talk. The impetus for engaging in this work arose from a sense that within developmental psychology and child language, when people are interested in understanding howchildren use language, they seem over-focused or concerned with questions of formal grammar and semantics. My interest is on understanding how a child learns to talk and through this process is then understood as being or becoming a member of a culture. When a young child is learning how to engage in everyday interaction she has to acquire those competencies that allow her to be simultaneously oriented to the conventions that inform talk-ininteraction and at the same time deal with the emotional or affective dimensions of her experience. It turns out that in developmental psychology these domains are traditionally studied separately or at least by researchers whose interests rarely overlap. In order to understand better early social relations (parent–child interaction), I want to pursue the idea that we will benefit by studying both early pragmatic development and emotional development. Not surprisingly, the theoretical positions underlying the study of these domains provide very different accounts of human development and this book illuminates why this might be the case. What follows will I hope serve as a case-study on the interdependence between the analysis of social interaction and subsequent interpretation

    Correlations in two-component log-gas systems

    Full text link
    A systematic study of the properties of particle and charge correlation functions in the two-dimensional Coulomb gas confined to a one-dimensional domain is undertaken. Two versions of this system are considered: one in which the positive and negative charges are constrained to alternate in sign along the line, and the other where there is no charge ordering constraint. Both systems undergo a zero-density Kosterlitz-Thouless type transition as the dimensionless coupling Γ:=q2/kT\Gamma := q^2 / kT is varied through Γ=2\Gamma = 2. In the charge ordered system we use a perturbation technique to establish an O(1/r4)O(1/r^4) decay of the two-body correlations in the high temperature limit. For Γ2+\Gamma \rightarrow 2^+, the low-fugacity expansion of the asymptotic charge-charge correlation can be resummed to all orders in the fugacity. The resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys. Shortened version of abstract belo

    The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source

    Full text link
    In classical random matrix theory the Gaussian and chiral Gaussian random matrix models with a source are realized as shifted mean Gaussian, and chiral Gaussian, random matrices with real (β=1)(\beta = 1), complex (β=2)\beta = 2) and real quaternion (β=4(\beta = 4) elements. We use the Dyson Brownian motion model to give a meaning for general β>0\beta > 0. In the Gaussian case a further construction valid for β>0\beta > 0 is given, as the eigenvalue PDF of a recursively defined random matrix ensemble. In the case of real or complex elements, a combinatorial argument is used to compute the averaged characteristic polynomial. The resulting functional forms are shown to be a special cases of duality formulas due to Desrosiers. New derivations of the general case of Desrosiers' dualities are given. A soft edge scaling limit of the averaged characteristic polynomial is identified, and an explicit evaluation in terms of so-called incomplete Airy functions is obtained.Comment: 21 page

    Difference system for Selberg correlation integrals

    Full text link
    The Selberg correlation integrals are averages of the products s=1ml=1n(xszl)μs\prod_{s=1}^m\prod_{l=1}^n (x_s - z_l)^{\mu_s} with respect to the Selberg density. Our interest is in the case m=1m=1, μ1=μ\mu_1 = \mu, when this corresponds to the μ\mu-th moment of the corresponding characteristic polynomial. We give the explicit form of a (n+1)×(n+1)(n+1) \times (n+1) matrix linear difference system in the variable μ\mu which determines the average, and we give the Gauss decomposition of the corresponding (n+1)×(n+1)(n+1) \times (n+1) matrix. For μ\mu a positive integer the difference system can be used to efficiently compute the power series defined by this average.Comment: 21 page

    Random Matrix Theory and the Sixth Painlev\'e Equation

    Full text link
    A feature of certain ensembles of random matrices is that the corresponding measure is invariant under conjugation by unitary matrices. Study of such ensembles realised by matrices with Gaussian entries leads to statistical quantities related to the eigenspectrum, such as the distribution of the largest eigenvalue, which can be expressed as multidimensional integrals or equivalently as determinants. These distributions are well known to be τ\tau-functions for Painlev\'e systems, allowing for the former to be characterised as the solution of certain nonlinear equations. We consider the random matrix ensembles for which the nonlinear equation is the σ\sigma form of \PVI. Known results are reviewed, as is their implication by way of series expansions for the distributions. New results are given for the boundary conditions in the neighbourhood of the fixed singularities at t=0,1,t=0,1,\infty of σ\sigma\PVI displayed by a generalisation of the generating function for the distributions. The structure of these expansions is related to Jimbo's general expansions for the τ\tau-function of σ\sigma\PVI in the neighbourhood of its fixed singularities, and this theory is itself put in its context of the linear isomonodromy problem relating to \PVI.Comment: Dedicated to the centenary of the publication of the Painlev\'e VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    {\bf τ\tau-Function Evaluation of Gap Probabilities in Orthogonal and Symplectic Matrix Ensembles}

    Full text link
    It has recently been emphasized that all known exact evaluations of gap probabilities for classical unitary matrix ensembles are in fact τ\tau-functions for certain Painlev\'e systems. We show that all exact evaluations of gap probabilities for classical orthogonal matrix ensembles, either known or derivable from the existing literature, are likewise τ\tau-functions for certain Painlev\'e systems. In the case of symplectic matrix ensembles all exact evaluations, either known or derivable from the existing literature, are identified as the mean of two τ\tau-functions, both of which correspond to Hamiltonians satisfying the same differential equation, differing only in the boundary condition. Furthermore the product of these two τ\tau-functions gives the gap probability in the corresponding unitary symmetry case, while one of those τ\tau-functions is the gap probability in the corresponding orthogonal symmetry case.Comment: AMS-Late

    Translation Of Though Poverty\u27s No Stain By A. P. Bunina

    Get PDF
    corecore