11,221 research outputs found
Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models
We present the first asteroseismological study for 42 massive ZZ Ceti stars
based on a large set of fully evolutionary carbonoxygen core DA white dwarf
models characterized by a detailed and consistent chemical inner profile for
the core and the envelope. Our sample comprise all the ZZ Ceti stars with
spectroscopic stellar masses between 0.72 and known to date.
The asteroseismological analysis of a set of 42 stars gives the possibility to
study the ensemble properties of the massive pulsating white dwarf stars with
carbonoxygen cores, in particular the thickness of the hydrogen envelope and
the stellar mass. A significant fraction of stars in our sample have stellar
mass high enough as to crystallize at the effective temperatures of the ZZ Ceti
instability strip, which enables us to study the effects of crystallization on
the pulsation properties of these stars. Our results show that the phase
diagram presented in Horowitz et al. (2010) seems to be a good representation
of the crystallization process inside white dwarf stars, in agreement with the
results from white dwarf luminosity function in globular clusters.Comment: 58 pages, 11 figures, accepted in Ap
Dissipation and memory effects in pure glue deconfinement
We investigate the effects of dissipation in the deconfining transition for a
pure SU(2) gauge theory. Using an effective model for the order parameter, we
study its Langevin evolution numerically, and compare results from local
additive noise dynamics to those obtained considering an exponential non-local
kernel for early times.Comment: 4 pages, 2 figures, to appear in the proceedings of Strong and
Electroweak Matter (SEWM06), BNL, May 200
Modelling of an IR scintillation counter
A systematic study of the excitation and de-excitation mechanisms in ternary gas mixtures Ar+CO2+N2 is presented regarding the possibility of developing a proportional scintillation counter based on the detection of the infrared molecular emissions associated with the lowest vibrational states of molecules. The use of visible or near-infrared photons ([lambda]<1Â [mu]m) for applications like imaging and quality control of microstructure detectors has been reported. In view of these applications we analyse the processes leading to near-infrared emissions in pure argon and give an estimation of the number of photons emitted per electron, at several pressures, as a function of the charge gain.http://www.sciencedirect.com/science/article/B6TJM-3YXB101-2M/1/b5bfeb3739389bb6dbe4d84c8746dbf
Hydrodynamic Models for Heavy-Ion Collisions, and beyond
A generic property of a first-order phase transition in equilibrium, and in
the limit of large entropy per unit of conserved charge, is the smallness of
the isentropic speed of sound in the ``mixed phase''. A specific prediction is
that this should lead to a non-isotropic momentum distribution of nucleons in
the reaction plane (for energies around 40 AGeV in our model calculation). On
the other hand, we show that from present effective theories for low-energy QCD
one does not expect the thermal transition rate between various states of the
effective potential to be much larger than the expansion rate, questioning the
applicability of the idealized Maxwell/Gibbs construction. Experimental data
could soon provide essential information on the dynamics of the phase
transition.Comment: 10 Pages, 4 Figures. Presented at 241st WE-Heraeus Seminar: Symposium
on Fundamental Issues in Elementary Matter: In Honor and Memory of Michael
Danos, Bad Honnef, Germany, 25-29 Sep 200
The sdA problem - II. Photometric and Spectroscopic Follow-up
Subdwarf A star (sdA) is a spectral classification given to objects showing
H-rich spectra and sub-main sequence surface gravities, but effective
temperature lower than the zero-age horizontal branch. Their evolutionary
origin is an enigma. In this work, we discuss the results of follow-up
observations of selected sdAs. We obtained time resolved spectroscopy for 24
objects, and time-series photometry for another 19 objects. For two targets, we
report both spectroscopy and photometry observations. We confirm seven objects
to be new extremely-low mass white dwarfs (ELMs), one of which is a known
eclipsing star. We also find the eighth member of the pulsating ELM class.Comment: Accepted for publication in MNRAS. 19 pages, 30 figures, 6 table
Quantum statistical correlations in thermal field theories: boundary effective theory
We show that the one-loop effective action at finite temperature for a scalar
field with quartic interaction has the same renormalized expression as at zero
temperature if written in terms of a certain classical field , and if
we trade free propagators at zero temperature for their finite-temperature
counterparts. The result follows if we write the partition function as an
integral over field eigenstates (boundary fields) of the density matrix element
in the functional Schr\"{o}dinger field-representation, and perform a
semiclassical expansion in two steps: first, we integrate around the
saddle-point for fixed boundary fields, which is the classical field ,
a functional of the boundary fields; then, we perform a saddle-point
integration over the boundary fields, whose correlations characterize the
thermal properties of the system. This procedure provides a
dimensionally-reduced effective theory for the thermal system. We calculate the
two-point correlation as an example.Comment: 13 pages, 1 figur
- …
