66,170 research outputs found

    Study of distortion effects and clustering of isotopic impurities in solid molecular para-hydrogen by Shadow Wave Functions

    Full text link
    We employed a fully optimized Shadow Wave Function (SWF) in combination with Variational Monte Carlo techniques to investigate the properties of HD molecules and molecular ortho-deuterium (o-D_2) in bulk solid para-hydrogen (p-H_2). Calculations were performed for different concentrations of impurities ranging from about 1% to 25% at the equilibrium density for the para-hydrogen crystal. By computing the excess energy both for clustered and isolated impurities we tried to determine a limit for the solubility of HD and o-D_2 in p-H_2.Comment: 4 pages, 4 figure

    Conformal Chiral Dynamics

    Get PDF
    We investigate the chiral dynamics of gauge theories developing an infrared stable fixed point. We determine the dependence of the bilinear fermion condensate on the underlying fermion mass and its anomalous dimension. We introduce the instanton contributions and investigate how they affect the dynamics near the fixed point. We generalize the Gell-Mann Oakes Renner relation and suggest to use it to uncover the presence of an infrared fixed point of the underlying gauge theory. Our results have an immediate impact on the construction of sensible extensions of the Standard Model of particle interactions and the general understanding of the phase diagram of strongly coupled theories.Comment: 4 RevTex pages, 1 figure with small modifications and added reference

    3-D Hand Pose Estimation from Kinect's Point Cloud Using Appearance Matching

    Full text link
    We present a novel appearance-based approach for pose estimation of a human hand using the point clouds provided by the low-cost Microsoft Kinect sensor. Both the free-hand case, in which the hand is isolated from the surrounding environment, and the hand-object case, in which the different types of interactions are classified, have been considered. The hand-object case is clearly the most challenging task having to deal with multiple tracks. The approach proposed here belongs to the class of partial pose estimation where the estimated pose in a frame is used for the initialization of the next one. The pose estimation is obtained by applying a modified version of the Iterative Closest Point (ICP) algorithm to synthetic models to obtain the rigid transformation that aligns each model with respect to the input data. The proposed framework uses a "pure" point cloud as provided by the Kinect sensor without any other information such as RGB values or normal vector components. For this reason, the proposed method can also be applied to data obtained from other types of depth sensor, or RGB-D camera

    Mechanistic origin of high retained strength in refractory BCC high entropy alloys up to 1900K

    Full text link
    The body centered cubic (BCC) high entropy alloys MoNbTaW and MoNbTaVW show exceptional strength retention up to 1900K. The mechanistic origin of the retained strength is unknown yet is crucial for finding the best alloys across the immense space of BCC HEA compositions. Experiments on Nb-Mo, Fe-Si and Ti-Zr-Nb alloys report decreased mobility of edge dislocations, motivating a theory of strengthening of edge dislocations in BCC alloys. Unlike pure BCC metals and dilute alloys that are controlled by screw dislocation motion at low temperatures, the strength of BCC HEAs can be controlled by edge dislocations, and especially at high temperatures, due to the barriers created for edge glide through the random field of solutes. A parameter-free theory for edge motion in BCC alloys qualitatively and quantitatively captures the strength versus temperature for the MoNbTaW and MoNbTaVW alloys. A reduced analytic version of the theory then enables screening over >600,000 compositions in the Mo-Nb-Ta-V-W family, identifying promising new compositions with high retained strength and/or reduced mass density. Overall, the theory reveals an unexpected mechanism responsible for high temperature strength in BCC alloys and paves the way for theory-guided design of stronger high entropy alloys.Comment: This version corrects the theory and provides more extensive explanation

    Ultra Minimal Technicolor and its Dark Matter TIMP

    Get PDF
    We introduce an explicit model with technifermion matter transforming according to multiple representations of the underlying technicolor gauge group. The model features simultaneously the smallest possible value of the naive S parameter and the smallest possible number of technifermions. The chiral dynamics is extremely rich. We construct the low-energy effective Lagrangian. We provide both the linearly and non-linearly realized ones. We then embed, in a natural way, the Standard Model (SM) interactions within the global symmetries of the underlying gauge theory. Several low-energy composite particles are SM singlets. One of these Technicolor Interacting Massive Particles (TIMP)s is a natural cold dark matter (DM) candidate. We estimate the fraction of the mass in the universe constituted by our DM candidate over the baryon one. We show that the new TIMP, differently from earlier models, can be sufficiently light to be directly produced and studied at the Large Hadron Collider (LHC).Comment: RevTeX, 31 pages. 9 figure
    corecore