17,487 research outputs found
Patterns of variability in early life traits of a Mediterranean coastal fish
Spawning dates and pelagic larval duration (PLD) are early life traits (ELT) crucial for understanding life cycles, properly assessing patterns of connectivity and gathering indications about patchiness or homogeneity of larval pools. Considering that little attention has been paid to spatial variability in these traits, we investigated variability of ELT from the analysis of otolith microstructure in the common two-banded sea bream Diplodus vulgaris. In the southwestern Adriatic Sea, along ~200 km of coast (∼1° in latitude, 41.2° to 40.2°N), variability of ELT was assessed at multiple spatial scales. Overall, PLD (ranging from 25 to 61 d) and spawning dates (October 2009 to February 2010) showed significant variability at small scales (i.e. <6 km), but not at larger scales. These outcomes suggest patchiness of the larval pool at small spatial scales. Multiple causal processes underlying the observed variability are discussed, along with the need to properly consider spatial variability in ELT, for example when delineating patterns of connectivity. Copyright © 2013 Inter-Research
Dispersal of larval and juvenile seabream: Implications for Mediterranean marine protected areas
In the marine context, information about dispersal is essential for the design of networks of marine protected areas (MPAs). Generally, most of the dispersal of demersal fishes is thought to be driven by the transport of eggs and larvae in currents, with the potential contribution of dispersal in later life stages relatively minimal.Using otolith chemistry analyses, we estimate dispersal patterns across a spatial scale of approximately 180. km at both propagule (i.e. eggs and larvae) and juvenile (i.e. between settlement and recruitment) stages of a Mediterranean coastal fishery species, the two-banded seabream Diplodus vulgaris. We detected three major natal sources of propagules replenishing local populations in the entire study area, suggesting that propagule dispersal distance extends to at least 90. km. For the juvenile stage, we detected dispersal of up to 165. km. Our work highlights the surprising and significant role of dispersal during the juvenile life stages as an important mechanism connecting populations. Such new insights are crucial for creating effective management strategies (e.g. MPAs and MPA networks) and to gain support from policymakers and stakeholders, highlighting that MPA benefits can extend well beyond MPA borders, and not only via dispersal of eggs and larvae, but also through movement by juveniles
A ricardian analysis of the impact of climate change on permanent crops in a mediterranean region
This is the first study which explores the impact of climate change in Sicily, a small Mediterranean region of Southern Europe. According to research, Mediterranean area has shown large climate shifts in the last century and it has been identified as one of the most prominent “Hot-Spots” in future climate change projections. Since agriculture is an economic activity which strongly depends on climate setting and is particularly responsive to climate changes, it is important to understand how such changes may affect agricultural profitability in the Mediterranean region. The aim of the present study is to assess the expected impact of climate change on permanent crops cultivated in Sicilian region (Southern Italy). By using data from Farm Accountancy Data Network and Ensembles climatic projections for 2021-2050 period, we showed that the impact of climate change is prominent in this region. However, crops respond to climatic variations in a different manner, highlighting that unlike the strong reduction in profitability of grapevine and citrus tree, the predicted average Net Revenue of olive tree is almost the same as in the reference period (1961-1990)
The current progress of the ALICE Ring Imaging Cherenkov Detector
Recently, the last two modules (out of seven) of the ALICE High Momentum
Particle Identification detector (HMPID) were assembled and tested. The full
detector, after a pre-commissioning phase, has been installed in the
experimental area, inside the ALICE solenoid, at the end of September 2006. In
this paper we review the status of the ALICE/HMPID project and we present a
summary of the series production of the CsI photo-cathodes. We describe the key
features of the production procedure which ensures high quality photo-cathodes
as well as the results of the quality assessment performed by means of a
specially developed 2D scanner system able to produce a detailed map of the CsI
photo-current over the entire photo-cathode surface.
Finally we present our recent R&D efforts toward the development of a novel
generation of imaging Cherenkov detectors with the aim to identify, in heavy
ions collisions, hadrons up to 30 GeV/c.Comment: Presented at the Imaging-2006 Conference, Stockholm, Sweden, June
200
Experimental Realization of a One-way Quantum Computer Algorithm Solving Simon's Problem
We report an experimental demonstration of a one-way implementation of a
quantum algorithm solving Simon's Problem - a black box period-finding problem
which has an exponential gap between the classical and quantum runtime. Using
an all-optical setup and modifying the bases of single-qubit measurements on a
five-qubit cluster state, key representative functions of the logical two-qubit
version's black box can be queried and solved. To the best of our knowledge,
this work represents the first experimental realization of the quantum
algorithm solving Simon's Problem. The experimental results are in excellent
agreement with the theoretical model, demonstrating the successful performance
of the algorithm. With a view to scaling up to larger numbers of qubits, we
analyze the resource requirements for an n-qubit version. This work helps
highlight how one-way quantum computing provides a practical route to
experimentally investigating the quantum-classical gap in the query complexity
model.Comment: 9 pages, 5 figure
Effects of recreational scuba diving on Mediterranean fishes: evidence of involuntary feeding?
Despite a large body of literature assessing the impacts of recreational scuba diving on marine habitats, little attention has been paid to the potentially harmful effects this has on fishes. The aim of this study was the assessment of the immediate response of different fish species to divers’ activities. A decrease of fishes’ natural diffidence towards divers is shown, probably due to an enhanced availability of their prey as a result of divers’ contacts with the substrate
Optimal path for a quantum teleportation protocol in entangled networks
Bellman's optimality principle has been of enormous importance in the
development of whole branches of applied mathematics, computer science, optimal
control theory, economics, decision making, and classical physics. Examples are
numerous: dynamic programming, Markov chains, stochastic dynamics, calculus of
variations, and the brachistochrone problem. Here we show that Bellman's
optimality principle is violated in a teleportation problem on a quantum
network. This implies that finding the optimal fidelity route for teleporting a
quantum state between two distant nodes on a quantum network with bi-partite
entanglement will be a tough problem and will require further investigation.Comment: 4 pages, 1 figure, RevTeX
Fish assemblages across the Mediterranean Sea and the effects of protection from fishing = I Popolamenti ittici nel Mediterraneo e gli effetti della protezione dall’impatto della pesca
Several studies have assessed the effectiveness of individual marine protected areas (MPAs) in protecting fish assemblages, but regional assessments of multiple parks are scarce. Here fish surveys using visual census were done in marine parks and fished areas at 31 locations across
the Mediterranean Sea. Fish species richness, diversity and biomass (especially of top predators) were higher in MPAs compared to fished areas, and community structure differed significantly between MPAs and fished areas. Results suggest that MPAs are generally effective means to protect and recover fish populations and assemblages
Information-flux approach to multiple-spin dynamics
We introduce and formalize the concept of information flux in a many-body
register as the influence that the dynamics of a specific element receive from
any other element of the register. By quantifying the information flux in a
protocol, we can design the most appropriate initial state of the system and,
noticeably, the distribution of coupling strengths among the parts of the
register itself. The intuitive nature of this tool and its flexibility, which
allow for easily manageable numerical approaches when analytic expressions are
not straightforward, are greatly useful in interacting many-body systems such
as quantum spin chains. We illustrate the use of this concept in quantum
cloning and quantum state transfer and we also sketch its extension to
non-unitary dynamics.Comment: 7 pages, 4 figures, RevTeX
High energy parton-parton amplitudes from lattice QCD and the stochastic vacuum model
Making use of the gluon gauge-invariant two-point correlation function,
recently determined by numerical simulation on the lattice in the quenched
approximation and the stochastic vacuum model, we calculate the elementary
(parton-parton) amplitudes in both impact-parameter and momentum transfer
spaces. The results are compared with those obtained from the Kr\"{a}mer and
Dosch ansatz for the correlators. Our main conclusion is that the divergences
in the correlations functions suggested by the lattice calculations do not
affect substantially the elementary amplitudes. Phenomenological and
semiempirical information presently available on elementary amplitudes is also
referred to and is critically discussed in connection with some theoretical
issues.Comment: Text with 11 pages in LaTeX (twocolumn form), 10 figures in
PostScript (psfig.tex used). Replaced with changes, Fig.1 modified, two
references added, some points clarified, various typos corrected. Version to
appear in Phys. Rev.
- …
