209 research outputs found
Balanced Ero1 activation and inactivation establishes ER redox homeostasis
The endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balance in the ER. In this paper, we show that Pdi1p is the key regulator of Ero1p activity. Reduced Pdi1p resulted in the activation of Ero1p by direct reduction of Ero1p regulatory bonds. Conversely, upon depletion of thiol substrates and accumulation of oxidized Pdi1p, Ero1p was inactivated by both autonomous oxidation and Pdi1p-mediated oxidation of Ero1p regulatory bonds. Pdi1p responded to the availability of free thiols and the relative levels of reduced and oxidized glutathione in the ER to control Ero1p activity and ensure that cells generate the minimum number of disulfide bonds needed for efficient oxidative protein folding.National Institutes of Health (U.S.) (GM46941
Crossover in the nature of the metallic phases in the perovskite-type RNiO_3
We have measured the photoemission spectra of NdSmNiO,
where the metal-insulator transition and the N\'{e}el ordering occur at the
same temperature for and the metal-insulator transition
temperature () is higher than the N\'{e}el temperature for . For , the spectral intensity at the Fermi level is high in the
metallic phase above and gradually decreases with cooling in the
insulating phase below while for it shows a pseudogap-like
behavior above and further diminishes below . The results
clearly establish that there is a sharp change in the nature of the electronic
correlations in the middle () of the metallic phase of the
NiO system.Comment: 4 pages, 4 figure, submitted to Phys. Rev.
Recommended from our members
Ninth Annual UCLA Survey of Business School Computer Usage: Where Are Business Schools In The Process of Computerization?
Life cycle analysis of the computerization process and thorough issues analysis for 178 schools. Comprehensive longitudinal presentation of data on 124 schools which participated in both the Fifth (1988) and 1992 surveys
Protein disulphide isomerase-assisted functionalization of proteinaceous substrates
Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.We thank to FCT 'Fundacao para a Ciencia e Tecnologia' (scholarship SFRH/BD/38363/2007) for providing Margarida Fernandes the grant for PhD studies
TorsinA and the TorsinA-Interacting Protein Printor Have No Impact on Endoplasmic Reticulum Stress or Protein Trafficking in Yeast
Early-onset torsion dystonia is a severe, life-long disease that leads to loss of motor control and involuntary muscle contractions. While the molecular etiology of the disease is not fully understood, a mutation in an AAA+ ATPase, torsinA, has been linked to disease onset. Previous work on torsinA has shown that it localizes to the endoplasmic reticulum, where there is evidence that it plays roles in protein trafficking, and potentially also protein folding. Given the high level of evolutionary conservation among proteins involved in these processes, the ability of human such proteins to function effectively in yeast, as well as the previous successes achieved in examining other proteins involved in complex human diseases in yeast, we hypothesized that Saccharomyces cerevisiae might represent a useful model system for studying torsinA function and the effects of its mutants. Since torsinA is proposed to function in protein homeostasis, we tested cells for their ability to respond to various stressors, using a fluorescent reporter to measure the unfolded protein response, as well as their rate of protein secretion. TorsinA did not impact these processes, even after co-expression of its recently identified interacting partner, printor. In light of these findings, we propose that yeast may lack an additional cofactor necessary for torsinA function or proteins required for essential post-translational modifications of torsinA. Alternatively, torsinA may not function in endoplasmic reticulum protein homeostasis. The strains and assays we describe may provide useful tools for identifying and investigating these possibilities and are freely available.Howard Hughes Medical InstituteBachmann-Strauss Dystonia and Parkinson Foundatio
CMGSDB: integrating heterogeneous Caenorhabditis elegans data sources using compositional data mining
CMGSDB (Database for Computational Modeling of Gene Silencing) is an integration of heterogeneous data sources about Caenorhabditis elegans with capabilities for compositional data mining (CDM) across diverse domains. Besides gene, protein and functional annotations, CMGSDB currently unifies information about 531 RNAi phenotypes obtained from heterogeneous databases using a hierarchical scheme. A phenotype browser at the CMGSDB website serves this hierarchy and relates phenotypes to other biological entities. The application of CDM to CMGSDB produces ‘chains’ of relationships in the data by finding two-way connections between sets of biological entities. Chains can, for example, relate the knock down of a set of genes during an RNAi experiment to the disruption of a pathway or specific gene expression through another set of genes not directly related to the former set. The web interface for CMGSDB is available at https://bioinformatics.cs.vt.edu/cmgs/CMGSDB/, and serves individual biological entity information as well as details of all chains computed by CDM
Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli
<p>Abstract</p> <p>Background</p> <p>The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as <it>E. coli </it>due to the presence of multiple pathways for their reduction.</p> <p>Results</p> <p>Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of <it>E. coli </it>even without the disruption of genes involved in disulfide bond reduction, for example <it>trxB </it>and/or <it>gor</it>. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3) pLysSRARE, an <it>E. coli </it>strain with the reducing pathways intact, than in the commercial Δ<it>gor </it>Δ<it>trxB </it>strain rosetta-gami upon co-expression of Erv1p.</p> <p>Conclusions</p> <p>Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of <it>E. coli </it>and open up new possibilities for the use of <it>E. coli </it>as a microbial cell factory.</p
Regulation of Neuronal APL-1 Expression by Cholesterol Starvation
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the deposition of b-amyloid plaques composed primarily of the amyloid-b peptide, a cleavage product of amyloid precursor protein (APP). While mutations in APP lead to the development of Familial Alzheimer’s Disease (FAD), sporadic AD has only one clear genetic modifier: the e4 allele of the apolipoprotein E (ApoE) gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1), and lrp-1 (lipoprotein receptor-related protein 1), suggesting a potential interaction between apl-1 and cholesterol metabolism. Methodology/Principal Findings: Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. Conclusions: Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission an
Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin
Endoplasmic reticulum (ER) oxidation 1 (ERO1) transfers disulfides to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Surprisingly, ERO1-deficient mammalian cells exhibit only a modest delay in disulfide bond formation. To identify ERO1-independent pathways to disulfide bond formation, we purified PDI oxidants with a trapping mutant of PDI. Peroxiredoxin IV (PRDX4) stood out in this list, as the related cytosolic peroxiredoxins are known to form disulfides in the presence of hydroperoxides. Mouse embryo fibroblasts lacking ERO1 were intolerant of PRDX4 knockdown. Introduction of wild-type mammalian PRDX4 into the ER rescued the temperature-sensitive phenotype of an ero1 yeast mutation. In the presence of an H2O2-generating system, purified PRDX4 oxidized PDI and reconstituted oxidative folding of RNase A. These observations implicate ER-localized PRDX4 in a previously unanticipated, parallel, ERO1-independent pathway that couples hydroperoxide production to oxidative protein folding in mammalian cells.EMBO [ALTF649-2008]; Fundacao para a Ciencia e Tecnologia, Portugal [SFRH/BSAB/922/2009, PTDC/QUI/73027/2006, IBB/CBME LA]; NIH [DK47119, DK075311, ES08681]; 100 Women In Hedge Funds Foundation; [NS050276]; [CA016087]; Medical Research Council [G0600717B]info:eu-repo/semantics/publishedVersio
The Heme Biosynthetic Pathway of the Obligate Wolbachia Endosymbiont of Brugia malayi as a Potential Anti-filarial Drug Target
Human filarial nematodes are causative agents of elephantiasis and African river blindness, which are among the most debilitating tropical diseases. Currently used drugs mainly affect microfilariae (mf) and have less effect on adult filarial nematodes, which can live in the human host for more than a decade. Filariasis drug control strategy relies on recurrent mass drug administration for many years. Development of novel drugs is also urgently needed due to the threat of drug resistance occurrence. Most filarial worms harbor an obligate endosymbiotic bacterium, Wolbachia, whose presence has been identified as a potential drug target. Comparative genomics had suggested Wolbachia heme biosynthesis as a potential drug target, and we present an analysis of selected enzymes alongside their human homologues from several different aspects—gene phylogenetic analyses, in vitro enzyme kinetic and inhibition assays and heme-deficient E. coli complementation assays. We also conducted ex vivo Brugia malayi viability assays using heme pathway inhibitors. These experiments demonstrate that heme biosynthesis could be critical for filarial worm survival and thus is a potential anti-filarial drug target set
- …
