4,363 research outputs found
Localization in a strongly disordered system: A perturbation approach
We prove that a strongly disordered two-dimensional system localizes with a
localization length given analytically. We get a scaling law with a critical
exponent is in agreement with the Chayes criterion . The case
we are considering is for off-diagonal disorder. The method we use is a
perturbation approach holding in the limit of an infinitely large perturbation
as recently devised and the Anderson model is considered with a Gaussian
distribution of disorder. The localization length diverges when energy goes to
zero with a scaling law in agreement to numerical and theoretical expectations.Comment: 5 pages, no figures. Version accepted for publication on
International Journal of Modern Physics
The capability of capacitive sensors in the monitoring relative humidity in hypogeum environments
Hypogeum environments are characterized by high levels of relative humidity (RH).
Most humidity sensors currently in use are based on the capacitive effect of the dielectric material
to change according to water vapour uptake. In hypogeum environments the dielectric material
can be saturated by water vapor, implying a significant error in the RH measurement. To improve
the capacity of this type of humidity sensors, a modified hygrometer capacitive sensor, which
uses a heating cycle to avoid the condensation, has been recently developed by Rotronic®.
During four field campaigns in two different hypogea environments (the Monkey Tomb in Siena
and the Mithreum of Caracalla Baths in Rome), RH was measured using the conventional
capacitive sensor (CCS) and the heated capacitive sensor (HCS). The purpose of this study was
to investigate the capability of HCS to detect RH variations when the environmental conditions
were close to vapor saturation. Significant differences were found between the measurements of
the two sensors: when RH was close to 100%, the CCS was not able to detect the RH decrease,
giving only a measure of RH=100%, while HCS detected such a RH decrease. Therefore, these
results encourage the use of HCS in the monitoring of RH levels in extreme humidity sites such
as hypogea sites
Neutron, gamma ray, and temperature effects on the electrical characteristics of thyristors
Experimental data showing the effects of neutrons, gamma rays, and temperature on the electrical and switching characteristics of phase-control and inverter-type SCR's are presented. The special test fixture built for mounting, heating, and instrumenting the test devices is described. Four SCR's were neutron irradiated at 300 K and four at 365 K for fluences up to 3.2 x 10 exp 13 n/sq. cm, and eight were gamma irradiated at 300 K only for gamma doses up to 5.1 Mrads. The electrical measurements were made during irradiation and the switching measurements were made only before and after irradiation. Radiation induced crystal defects, resulting primarily from fast neutrons, caused the reduction of minority carrier lifetime through the generation of R-G centers. The reduction in lifetime caused increases in the on-state voltage drop and in the reverse and forward leakage currents, and decreases in the turn-off time
Duality in Perturbation Theory and the Quantum Adiabatic Approximation
Duality is considered for the perturbation theory by deriving, given a series
solution in a small parameter, its dual series with the development parameter
being the inverse of the other. A dual symmetry in perturbation theory is
identified. It is then shown that the dual to the Dyson series in quantum
mechanics is given by a recent devised series having the adiabatic
approximation as leading order. A simple application of this result is given by
rederiving a theorem for strongly perturbed quantum systems.Comment: 9 pages, revtex. Improved english and presentation. Final version
accepted for publication by Physical Review
Contemporaneous broad-band photometry and H observations of T Tauri stars
The study of contemporaneous variations of the continuum flux and emission
lines is of great importance to understand the different astrophysical
processes at work in T Tauri stars. In this paper we present the results of a
simultaneous and H photometric monitoring, contemporaneous to
medium-resolution spectroscopy of six T Tauri stars in the Taurus-Auriga star
forming region. We have characterized the H photometric system using
synthetic templates and the contemporaneous spectra of the targets. We show
that we can achieve a precision corresponding to 23 \AA\ in the H
equivalent width, in typical observing conditions. The spectral analysis has
allowed us to determine the basic stellar parameters and the values of
quantities related to the accretion. In particular, we have measured a
significant veiling only for the three targets with the strongest H
emission (T Tau, FM Tau, and DG Tau). The broad-band photometric variations are
found to be in the range 0.050.70 mag and are often paired to variations in
the H intensity, which becomes stronger when the stellar continuum is
weaker. In addition, we have mostly observed a redder and a bluer
color as the stars become fainter. For most of the targets, the timescales of
these variations seem to be longer than the rotation period. One exception is T
Tau, for which the broad-band photometry varies with the rotation period. The
most plausible interpretation of these photometric and H variations is
that they are due to non-stationary mass accretion onto the stars, but
rotational modulation can play a major role in some cases.Comment: 21 pages, 11 figures, accepted for publication in Acta Astronomic
Theory of dressed states in quantum optics
The dual Dyson series [M.Frasca, Phys. Rev. A {\bf 58}, 3439 (1998)], is used
to develop a general perturbative method for the study of atom-field
interaction in quantum optics. In fact, both Dyson series and its dual, through
renormalization group methods to remove secular terms from the perturbation
series, give the opportunity of a full study of the solution of the
Schr\"{o}dinger equation in different ranges of the parameters of the given
hamiltonian. In view of recent experiments with strong laser fields, this
approach seems well-suited to give a clarification and an improvement of the
applications of the dressed states as currently done through the eigenstates of
the atom-field interaction, showing that these are just the leading order of
the dual Dyson series when the Hamiltonian is expressed in the interaction
picture. In order to exploit the method at the best, a study is accomplished of
the well-known Jaynes-Cummings model in the rotating wave approximation, whose
exact solution is known, comparing the perturbative solutions obtained by the
Dyson series and its dual with the same approximations obtained by Taylor
expanding the exact solution. Finally, a full perturbative study of high-order
harmonic generation is given obtaining, through analytical expressions, a clear
account of the power spectrum using a two-level model, even if the method can
be successfully applied to a more general model that can account for ionization
too. The analysis shows that to account for the power spectrum it is needed to
go to first order in the perturbative analysis. The spectrum obtained gives a
way to measure experimentally the shift of the energy levels of the atom
interacting with the laser field by looking at the shifting of hyper-Raman
lines.Comment: Revtex, 17 page
Accretion, disks, and magnetic activity in the TW Hya association
We present new photometric and spectroscopic data for the M-type members of
the TW Hya association with the aim of a comprehensive study of accretion,
disks and magnetic activity at the critical age of ~10 Myr where circumstellar
matter disappears.Comment: 4 pages, to appear in Proceedings IAU Symposium No. 314, Young Stars
& Planets Near the Sun, 201
- …
