291 research outputs found

    Glutathione increase by the n-butanoyl glutathione derivative (GSH-C4) inhibits viral replication and induces a predominant Th1 immune profile in old mice infected with influenza virus

    Get PDF
    During aging, glutathione (GSH) content declines and the immune system undergoes a deficiency in the induction of Th1 response. Reduced secretion of Th1 cytokines, which is associated with GSH depletion, could weaken the host defenses against viral infections. We first evaluated the concentration of GSH and cysteine in organs of old mice; then, the effect of the administration of the N-butanoyl GSH derivative (GSH-C4) on the response of aged mice infected with influenza A PR8/H1N1 virus was studied through the determination of GSH concentration in organs, lung viral titer, IgA and IgG1/IgG2a production and Th1/Th2 cytokine profile. Old mice had lower GSH than young mice in organs. Also the gene expression of endoplasmic reticulum (ER) stress markers involved in GSH metabolism and folding of proteins, i.e. Nrf2 and PDI, was reduced. Following infection, GSH content remained low and neither infection nor GSH-C4 treatment affected Nrf2 expression. In contrast, PDI expression was upregulated during infection and appeared counterbalanced by GSH-C4. Moreover, the treatment with GSH-C4 increased GSH content in organs, reduced viral replication and induced a predominant Th1 response. In conclusion, GSH-C4 treatment could be used in the elderly to contrast influenza virus infection by inducing immune response, in particular the Th1 profile

    Linear waves in sheared flows. Lower bound of the vorticity growth and propagation discontinuities in the parameters space

    Get PDF
    This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille and Couette flows. Extension of J. L. Synge's procedure (1938) to the initial-value problem allowed us to find the region of the wavenumber-Reynolds number map where the enstrophy of any initial disturbance cannot grow. This region is wider than the kinetic energy's one. We also show that the parameters space is split in two regions with clearly distinct propagation and dispersion properties

    Cytoprotective effect of preparations from various parts of Punica granatum L. fruits in oxidatively injured mammalian cells in comparison with their antioxidant capacity in cell free systems

    Get PDF
    none9Pomegranate (Punica granatum L.) juice (PJ) is being increasingly proposed as a nutritional supplement to prevent atherosclerosis in humans. This therapeutically valuable potential has been attributed to PJ antioxidant capacity which has been mostly tested by means of cell-free assays: indeed, to the best of our knowledge, no study has focused on the direct antioxidant capacity of PJ in cultured cells. Here, the antioxidant capacity in cell free-systems of preparations from various parts of pomegranate has been compared with their cytoprotective – bona fide antioxidant – activity in cultured human cells (U937 promonocytes and HUVEC endothelial cells) exposed to an array of oxidizing agents. Pomegranate derivatives were PJ, arils only juice (AJ) and aqueous rinds extract (RE). In cell-free assays – 1,1-diphenyl-2-picrylhydrazyl (DPPH), chemiluminescence luminol/xanthine/xanthine oxidase and lipoxygenase assays – all the preparations displayed good antioxidant capacity, the relative potency order being RE > PJ > AJ. On the contrary, only RE was capable of preventing the deleterious effects – cytotoxicity, DNA damage and depletion of non protein sulphydrils (NPSH) pool – caused by treatment of cells with H2O2, tert-butylhydroperoxide (tB-OOH) or oxidized lipoproteins (Ox-LDL) via a mechanism which is likely to involve both direct scavenging of radical species and iron chelation. Surprisingly, AJ and PJ slightly sensitized cells to the cytotoxic effects of the three agents. Then it would appear that AJ, the major and tasty part of PJ, does not contain ellagic acid and punicalagin (i.e. the polyphenols highly represented in RE which are reputed to be responsible for the antioxidant capacity) in amounts sufficient to exert cytoprotection in oxidatively injured, living cells. Based on these results, the development and evaluation of rinds-only based derivatives for antiatherogenic preventive purposes in humans should be encouraged.openSESTILI P; MARTINELLI C; RICCI D; FRATERNALE D; BUCCHINI A; GIAMPERI L; CURCIO R; PICCOLI G; STOCCHI V.Sestili, Piero; Martinelli, Chiara; Ricci, Donata; Fraternale, Daniele; Bucchini, ANAHI ELENA ADA; Giamperi, Laura; Curcio, R; Piccoli, Giovanni; Stocchi, Vilbert

    A new humanized antibody is effective against pathogenic fungi in vitro

    Get PDF
    Invasive fungal infections mainly affect patients undergoing transplantation, surgery, neoplastic disease, immunocompromised subjects and premature infants, and cause over 1.5 million deaths every year. The most common fungi isolated in invasive diseases are Candida spp., Cryptococcus spp., and Aspergillus spp. and even if four classes of antifungals are available (Azoles, Echinocandins, Polyenes and Pyrimidine analogues), the side effects of drugs and fungal acquired and innate resistance represent the major hurdles to be overcome. Monoclonal antibodies are powerful tools currently used as diagnostic and therapeutic agents in different clinical contexts but not yet developed for the treatment of invasive fungal infections. In this paper we report the development of the first humanized monoclonal antibody specific for beta-1, 3 glucans, a vital component of several pathogenic fungi. H5K1 has been tested on C. auris, one of the most urgent threats and resulted efficient both alone and in combination with Caspofungin and Amphotericin B showing an enhancement effect. Our results support further preclinical and clinical developments for the use of H5K1 in the treatment of patients in need

    Prunus spinosa extract loaded in biomimetic nanoparticles evokes in vitro anti-inflammatory and wound healing activities

    Get PDF
    Prunus spinosa fruits (PSF) contain different phenolic compounds showing antioxidant and anti-inflammatory activities. Innovative drug delivery systems such as biomimetic nanoparti-cles could improve the activity of PSF extract by promoting (i) the protection of payload into the lipidic bilayer, (ii) increased accumulation to the diseased tissue due to specific targeting properties, (iii) improved biocompatibility, (iv) low toxicity and increased bioavailability. Using membrane proteins extracted from human monocyte cell line THP-1 cells and a mixture of phospholipids, we formulated two types of PSF-extract-loaded biomimetic vesicles differing from each other for the presence of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dioleoyl-sn-glycero-3-phospho-(1\u2032-rac-glycerol) (DOPG). The biological activity of free extract (PSF), compared to both types of extract-loaded vesicles (PSF-DOPCs and PSF-DOPGs) and empty vesicles (DOPCs and DOPGs), was evaluated in vitro on HUVEC cells. PSF-DOPCs showed preferential incorporation of the extract. When enriched into the nanovesicles, the extract showed a significantly increased anti-inflammatory activity, and a pronounced wound-healing effect (with PSF-DOPCs more efficient than PSF-DOPG) compared to free PSF. This innovative drug delivery system, combining nutraceuti-cal active ingredients into a biomimetic formulation, represents a possible adjuvant therapy for the treatment of wound healing. This nanoplatform could be useful for the encapsulation/enrichment of other nutraceutical products with short stability and low bioavailability

    The HIV-1 Transactivator Factor (Tat) Induces Enterocyte Apoptosis through a Redox-Mediated Mechanism

    Get PDF
    The intestinal mucosa is an important target of human immunodeficiency virus (HIV) infection. HIV virus induces CD4+ T cell loss and epithelial damage which results in increased intestinal permeability. The mechanisms involved in nutrient malabsorption and alterations of intestinal mucosal architecture are unknown. We previously demonstrated that HIV-1 transactivator factor (Tat) induces an enterotoxic effect on intestinal epithelial cells that could be responsible for HIV-associated diarrhea. Since oxidative stress is implicated in the pathogenesis and morbidity of HIV infection, we evaluated whether Tat induces apoptosis of human enterocytes through oxidative stress, and whether the antioxidant N-acetylcysteine (NAC) could prevent it. Caco-2 and HT29 cells or human intestinal mucosa specimens were exposed to Tat alone or combined with NAC. In an in-vitro cell model, Tat increased the generation of reactive oxygen species and decreased antioxidant defenses as judged by a reduction in catalase activity and a reduced (GSH)/oxidized (GSSG) glutathione ratio. Tat also induced cytochrome c release from mitochondria to cytosol, and caspase-3 activation. Rectal dialysis samples from HIV-infected patients were positive for the oxidative stress marker 8-hydroxy-2′-deoxyguanosine. GSH/GSSG imbalance and apoptosis occurred in jejunal specimens from HIV-positive patients at baseline and from HIV-negative specimens exposed to Tat. Experiments with neutralizing anti-Tat antibodies showed that these effects were direct and specific. Pre-treatment with NAC prevented Tat-induced apoptosis and restored the glutathione balance in both the in-vitro and the ex-vivo model. These findings indicate that oxidative stress is one of the mechanism involved in HIV-intestinal disease

    Human Indoleamine 2,3-dioxygenase 1 (IDO1) Expressed in Plant Cells Induces Kynurenine Production.

    Get PDF
    Genetic engineering of plants has turned out to be an attractive approach to produce various secondary metabolites. Here, we attempted to produce kynurenine, a health-promoting metabolite, in plants of Nicotiana tabacum (tobacco) transformed by Agrobacterium tumefaciens with the gene, coding for human indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme responsible for the kynurenine production because of tryptophan degradation. The presence of IDO1 gene in transgenic plants was confirmed by PCR, but the protein failed to be detected. To confer higher stability to the heterologous human IDO1 protein and to provide a more sensitive method to detect the protein of interest, we cloned a gene construct coding for IDO1-GFP. Analysis of transiently transfected tobacco protoplasts demonstrated that the IDO1-GFP gene led to the expression of a detectable protein and to the production of kynurenine in the protoplast medium. Interestingly, the intracellular localisation of human IDO1 in plant cells is similar to that found in mammal cells, mainly in cytosol, but in early endosomes as well. To the best of our knowledge, this is the first report on the expression of human IDO1 enzyme capable of secreting kynurenines in plant cells

    "Shock and kill" effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence

    Get PDF
    Latently infected, resting memory CD4+ T cells and macrophages represent a major obstacle to the eradication of HIV-1. For this purpose, "shock and kill" strategies have been proposed (activation of HIV-1 followed by stimuli leading to cell death). Histone deacetylase inhibitors (HDACIs) induce HIV-1 activation from quiescence, yet class/isoform-selective HDACIs are needed to specifically target HIV-1 latency. We tested 32 small molecule HDACIs for their ability to induce HIV-1 activation in the ACH-2 and U1 cell line models. In general, potent activators of HIV-1 replication were found among non-class selective and class I-selective HDACIs. However, class I selectivity did not reduce the toxicity of most of the molecules for uninfected cells, which is a major concern for possible HDACI-based therapies. To overcome this problem, complementary strategies using lower HDACI concentrations have been explored. We added to class I HDACIs the glutathione-synthesis inhibitor buthionine sulfoximine (BSO), in an attempt to create an intracellular environment that would facilitate HIV-1 activation. The basis for this strategy was that HIV-1 replication decreases the intracellular levels of reduced glutathione, creating a pro-oxidant environment which in turn stimulates HIV-1 transcription. We found that BSO increased the ability of class I HDACIs to activate HIV-1. This interaction allowed the use of both types of drugs at concentrations that were non-toxic for uninfected cells, whereas the infected cell cultures succumbed more readily to the drug combination. These effects were associated with BSO-induced recruitment of HDACI-insensitive cells into the responding cell population, as shown in Jurkat cell models for HIV-1 quiescence. The results of the present study may contribute to the future design of class I HDACIs for treating HIV-1. Moreover, the combined effects of class I-selective HDACIs and the glutathione synthesis inhibitor BSO suggest the existence of an Achilles' heel that could be manipulated in order to facilitate the "kill" phase of experimental HIV-1 eradication strategies
    corecore