522 research outputs found
Counterions at Charged Cylinders: Criticality and universality beyond mean-field
The counterion-condensation transition at charged cylinders is studied using
Monte-Carlo simulation methods. Employing logarithmically rescaled radial
coordinates, large system sizes are tractable and the critical behavior is
determined by a combined finite-size and finite-ion-number analysis. Critical
counterion localization exponents are introduced and found to be in accord with
mean-field theory both in 2 and 3 dimensions. In 3D the heat capacity shows a
universal jump at the transition, while in 2D, it consists of discrete peaks
where single counterions successively condense.Comment: 4 pages, 3 figures; submitted to Phys. Rev. Lett. (2005
Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN
Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (101⎯⎯0)(101¯0)(101¯0) m-plane surface. The diffuse scattering is extended in the (0001)(0001)(0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [12⎯⎯10][12¯10] [12¯10] and closely spaced along [0001][0001][0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001][0001][0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F−nF−nF−n, with an exponent n=0.25±0.02n=0.25±0.02n=0.25±0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4
Contested Narratives: The Influence of Local Remembrance on National Narratives of Gettysburg During The 19th Century
Melting of a colloidal crystal
A melting transition for a system of hard spheres interacting by a repulsive
Yukawa potential of DLVO form is studied. To find the location of the phase
boundary, we propose a simple theory to calculate the free energies for the
coexisting liquid and solid. The free energy for the liquid phase is
approximated by a virial expansion. The free energy of the crystalline phase is
calculated in the spirit of the Lenard-Jonnes and Devonshire (LJD) theory. The
phase boundary is found by equating the pressures and chemical potentials of
the coexisting phases. When the approximation leading to the equation of state
for the liquid breakes down, the first order transition line is also obtained
by applying the Lindemann criterion to the solid phase. Our results are then
compared with the Monte Carlo simulations.Comment: 7 pages, Revtex (using twocolumn style), four figures and postscript
file. Submitted to Physica
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects
The contribution of electrochemical methods
to the knowledge of dynamic speciation of toxic trace elements in marine waters is critically reviewed. Due to the importance
of dynamic considerations in the interpretation of the electrochemical signal, the principles and recent developments of kinetic features in the interconversion of metal complex species will be presented. As dynamic electrochemical
methods, only stripping techniques (anodic stripping voltammetry and stripping chronopotentiometry) will be used because they are the most important for the
determination of trace elements. Competitive ligand ex- change-adsorptive cathodic stripping voltammetry, which should be considered an equilibrium technique rather than a dynamic method, will be also discussed because the complexing parameters may be affected by some kinetic limitations if equilibrium before analysis is not attained and/or the flux of the adsorbed complex is in fluenced by the lability of the natural complexes in the water sample. For a correct data interpretation and system characterization the comparison of results obtained from different techniques seems essential in the articulation of a serious discussion of their meaning
Combining Deep Eutectic Solvents with TEMPO‐based Polymer Electrodes: Influence of Molar Ratio on Electrode Performance
For sustainable energy storage, all-organic batteries based on redox-active polymers promise to become an alternative to lithium ion batteries. Yet, polymers contribute to the goal of an all-organic cell as electrodes or as solid electrolytes. Here, we replace the electrolyte with a deep eutectic solvent (DES) composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) and N-methylacetamide (NMA), while using poly(2,2,6,6-tetramethylpiperidin-1-yl-oxyl methacrylate) (PTMA) as cathode. The successful combination of a DES with a polymer electrode is reported here for the first time. The electrochemical stability of PTMA electrodes in the DES at the eutectic molar ratio of 1 : 6 is comparable to conventional battery electrolytes. More viscous electrolytes with higher salt concentration can hinder cycling at high rates. Lower salt concentration leads to decreasing capacities and faster decomposition. The eutectic mixture of 1 : 6 is best suited uniting high stability and moderate viscosity
- …
