16,737 research outputs found
Charged Rotating Black Holes in Equilibrium
Axially symmetric, stationary solutions of the Einstein-Maxwell equations
with disconnected event horizon are studied by developing a method of explicit
integration of the corresponding boundary-value problem. This problem is
reduced to non-leaner system of algebraic equations which gives relations
between the masses, the angular momenta, the angular velocities, the charges,
the distance parameters, the values of the electromagnetic field potential at
the horizon and at the symmetry axis. A found solution of this system for the
case of two charged non-rotating black holes shows that in general the total
mass depends on the distance between black holes. Two-Killing reduction
procedure of the Einstein-Maxwell equations is also discussed.Comment: LaTeX 2.09, no figures, 15 pages, v2, references added, introduction
section slightly modified; v3, grammar errors correcte
Equilibrium Configuration of Black Holes and the Inverse Scattering Method
The inverse scattering method is applied to the investigation of the
equilibrium configuration of black holes. A study of the boundary problem
corresponding to this configuration shows that any axially symmetric,
stationary solution of the Einstein equations with disconnected event horizon
must belong to the class of Belinskii-Zakharov solutions. Relationships between
the angular momenta and angular velocities of black holes are derived.Comment: LaTeX, 14 pages, no figure
Report of an exploratory study: Safety and liability considerations for photovoltaic modules/panels
An overview of legal issues as they apply to design, manufacture and use of photovoltaic module/array devices is provided and a methodology is suggested for use of the design stage of these products to minimize or eliminate perceived hazards. Questions are posed to stimulate consideration of this area
Measurement of turbulent correlations in a coaxial flow of dissimilar fluids
Axial turbulence measurements in coaxial flow of dissimilar gase
Template-based Gravitational-Wave Echoes Search Using Bayesian Model Selection
The ringdown of the gravitational-wave signal from a merger of two black
holes has been suggested as a probe of the structure of the remnant compact
object, which may be more exotic than a black hole. It has been pointed out
that there will be a train of echoes in the late-time ringdown stage for
different types of exotic compact objects. In this paper, we present a
template-based search methodology using Bayesian statistics to search for
echoes of gravitational waves. Evidence for the presence or absence of echoes
in gravitational-wave events can be established by performing Bayesian model
selection. The Occam factor in Bayesian model selection will automatically
penalize the more complicated model that echoes are present in
gravitational-wave strain data because of its higher degree of freedom to fit
the data. We find that the search methodology was able to identify
gravitational-wave echoes with Abedi et al.'s echoes waveform model about 82.3%
of the time in simulated Gaussian noise in the Advanced LIGO and Virgo network
and about 61.1% of the time in real noise in the first observing run of
Advanced LIGO with significance. Analyses using this method are
performed on the data of Advanced LIGO's first observing run, and we find no
statistical significant evidence for the detection of gravitational-wave
echoes. In particular, we find combined evidence of the three events
in Advanced LIGO's first observing run. The analysis technique developed in
this paper is independent of the waveform model used, and can be used with
different parametrized echoes waveform models to provide more realistic
evidence of the existence of echoes from exotic compact objects.Comment: 16 pages, 6 figure
Quantum Sensor Miniaturization
The classical bound on image resolution defined by the Rayleigh limit can be
beaten by exploiting the properties of quantum mechanical entanglement. If
entangled photons are used as signal states, the best possible resolution is
instead given by the Heisenberg limit, an improvement proportional to the
number of entangled photons in the signal. In this paper we present a novel
application of entanglement by showing that the resolution obtained by an
imaging system utilizing separable photons can be achieved by an imaging system
making use of entangled photons, but with the advantage of a smaller aperture,
thus resulting in a smaller and lighter system. This can be especially valuable
in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology
Letter
The EMC Effect and High Momentum Nucleons in Nuclei
Recent developments in understanding the influence of the nucleus on
deep-inelastic structure functions, the EMC effect, are reviewed. A new data
base which expresses ratios of structure functions in terms of the Bjorken
variable is presented. Information about two-nucleon
short-range correlations from experiments is also discussed and the remarkable
linear relation between short-range correlations and teh EMC effect is
reviewed. A convolution model that relates the underlying source of the EMC
effect to modification of either the mean-field nucleons or the short-range
correlated nucleons is presented. It is shown that both approaches are equally
successful in describing the current EMC data.Comment: 31 pages, 11 figure
Observation of B_s Production at the Y(5S) Resonance
Using the CLEO detector at the Cornell Electron Storage Ring, we have observed the B_s meson in e^+e^- annihilation at the Υ(5S) resonance. We find 14 candidates consistent with B_s decays into final states with a J/ψ or a D_s^((*)-). The probability that we have observed a background fluctuation is less than 8×10^(-10). We have established that at the energy of the Υ(5S) resonance B_s production proceeds predominantly through the creation of B_s^*B̅ _s^* pairs. We find σ(e^+e^-→B^s^*B̅ ^*)=[0.11_(-0.03)^(+0.04)(stat)±0.02(syst)] nb, and set the following limits: σ(e^+e^-→B_sB̅ _s)/σ(e^+e^-→B_s^*B̅ _s^*)<0.16 and [σ(e^+e^-→B_sB̅ _s^*)+σ(e^+e^-→B_s*B̅ _s)]/σ(e^+e^-→B_s*B̅ _s^*)<0.16 (90% C.L.). The mass of the B_s^* meson is measured to be M_(B_s^*=[5.414±0.001(stat)±0.003(syst)] GeV/c^2
Can Long-Range Nuclear Properties Be Influenced By Short Range Interactions? A chiral dynamics estimate
Recent experiments and many-body calculations indicate that approximately
20\% of the nucleons in medium and heavy nuclei () are part of
short-range correlated (SRC) primarily neutron-proton () pairs. We find
that using chiral dynamics to account for the formation of pairs due to
the effects of iterated and irreducible two-pion exchange leads to values
consistent with the 20\% level. We further apply chiral dynamics to study how
these correlations influence the calculations of nuclear charge radii, that
traditionally truncate their effect, to find that they are capable of
introducing non-negligible effects.Comment: 6 pages, 0 figures. This version includes many improvement
- …
