719 research outputs found
No phase transition for Gaussian fields with bounded spins
Let a<b, \Omega=[a,b]^{\Z^d} and H be the (formal) Hamiltonian defined on
\Omega by
H(\eta) = \frac12 \sum_{x,y\in\Z^d} J(x-y) (\eta(x)-\eta(y))^2 where
J:\Z^d\to\R is any summable non-negative symmetric function (J(x)\ge 0 for all
x\in\Z^d, \sum_x J(x)<\infty and J(x)=J(-x)). We prove that there is a unique
Gibbs measure on \Omega associated to H. The result is a consequence of the
fact that the corresponding Gibbs sampler is attractive and has a unique
invariant measure.Comment: 7 page
Non-linear spectroscopy of rubidium: An undergraduate experiment
In this paper, we describe two complementary non-linear spectroscopy methods
which both allow to achieve Doppler-free spectra of atomic gases. First,
saturated absorption spectroscopy is used to investigate the structure of the
transition in rubidium. Using a slightly
modified experimental setup, Doppler-free two-photon absorption spectroscopy is
then performed on the transition in
rubidium, leading to accurate measurements of the hyperfine structure of the
energy level. In addition, electric dipole selection rules of
the two-photon transition are investigated, first by modifying the polarization
of the excitation laser, and then by measuring two-photon absorption spectra
when a magnetic field is applied close to the rubidium vapor. All experiments
are performed with the same grating-feedback laser diode, providing an
opportunity to compare different high resolution spectroscopy methods using a
single experimental setup. Such experiments may acquaint students with quantum
mechanics selection rules, atomic spectra and Zeeman effect.Comment: 16 pages, 8 figure
Exact multipoint and multitime correlation functions of a one-dimensional model of adsorption and evaporation of dimers
In this work, we provide a method which allows to compute exactly the
multipoint and multi-time correlation functions of a one-dimensional stochastic
model of dimer adsorption-evaporation with random (uncorrelated) initial
states.
In particular explicit expressions of the two-point
noninstantaneous/instantaneous correlation functions are obtained. The
long-time behavior of these expressions is discussed in details and in various
physical regimes.Comment: 6 pages, no figur
Metastable and scaling regimes of a one-dimensional Kawasaki dynamics
We investigate the large-time scaling regimes arising from a variety of
metastable structures in a chain of Ising spins with both first- and
second-neighbor couplings while subject to a Kawasaki dynamics. Depending on
the ratio and sign of these former, different dynamic exponents are suggested
by finite-size scaling analyses of relaxation times. At low but
nonzero-temperatures these are calculated via exact diagonalizations of the
evolution operator in finite chains under several activation barriers. In the
absence of metastability the dynamics is always diffusive.Comment: 18 pages, 8 figures. Brief additions. To appear in Phys. Rev.
Solution of classical stochastic one dimensional many-body systems
We propose a simple method that allows, in one dimension, to solve exactly a
wide class of classical stochastic many-body systems far from equilibrium. For
the sake of illustration and without loss of generality, we focus on a model
that describes the asymmetric diffusion of hard core particles in the presence
of an external source and instantaneous annihilation. Starting from a Master
equation formulation of the problem we show that the density and multi-point
correlation functions obey a closed set of integro-differential equations which
in turn can be solved numerically and/or analyticallyComment: 2 figure
Solution of a class of one-dimensional reaction-diffusion models in disordered media
We study a one-dimensional class of reaction-diffusion models on a
parameters manifold. The equations of motion of the correlation
functions close on this manifold. We compute exactly the long-time behaviour of
the density and correlation functions for
{\it quenched} disordered systems. The {\it quenched} disorder consists of
disconnected domains of reaction. We first consider the case where the disorder
comprizes a superposition, with different probabilistic weights, of finite
segments, with {\it periodic boundary conditions}. We then pass to the case of
finite segments with {\it open boundary conditions}: we solve the ordered
dynamics on a open lattice with help of the Dynamical Matrix Ansatz (DMA) and
investigate further its disordered version.Comment: 11 pages, no figures. To appear in Phys.Rev.
Diffusion-limited Reactions of hard-core Particles in one-dimension
We investigate three different methods to tackle the problem of
diffusion-limited reactions (annihilation) of hard-core classical particles in
one dimension. We first extend an approach devised by Lushnikov and calculate
for a single species the asymptotic long-time and/or large distance behavior of
the two-point correlation function. Based on a work by Grynberg et al., which
was developed to treat stochastic adsorption-desorption models, we provide in a
second step the exact two-point correlation function (both for one and
two-time) of Lushnikov's model. We then propose a new formulation of the
problem in terms of path integrals for pseudo-fermions. This formalism can be
used to advantage in the multi-species case, specially when applying
perturbative renormalization group techniques.Comment: 15 pages, no figure, to appear in PR
Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure
In order to characterize magnetic-field (B) tunable THz plasmonic detectors,
spectroscopy experiments were carried out at liquid helium temperatures and
high magnetic fields on devices fabricated on a high electron mobility
GaAs/AlGaAs heterostructure. The samples were either gated (the gate of a
meander shape) or ungated. Spectra of a photovoltage generated by THz radiation
were obtained as a function of B at a fixed THz excitation from a THz laser or
as a function of THz photon frequency at a fixed B with a Fourier spectrometer.
In the first type of measurements, the wave vector of magnetoplasmons excited
was defined by geometrical features of samples. It was also found that the
magnetoplasmon spectrum depended on the gate geometry which gives an additional
parameter to control plasma excitations in THz detectors. Fourier spectra
showed a strong dependence of the cyclotron resonance amplitude on the
conduction-band electron filling factor which was explained within a model of
the electron gas heating with the THz radiation. The study allows to define
both the advantages and limitations of plasmonic devices based on high-mobility
GaAs/AlGaAs heterostructures for THz detection at low temperatures and high
magnetic fields.Comment: 8 pages, 11 figure
Beam splitting and Hong-Ou-Mandel interference for stored light
Storing and release of a quantum light pulse in a medium of atoms in the
tripod configuration are studied. Two complementary sets of control fields are
defined, which lead to independent and complete photon release at two stages.
The system constitutes a new kind of a flexible beam splitter in which the
input and output ports concern photons of the same direction but well separated
in time. A new version of Hong-Ou-Mandel interference is discussed.Comment: 8 pages, 3 figure
- …
