13,737 research outputs found
Thrifty swimming with shear-thinning
Microscale propulsion is integral to numerous biomedical systems, for example
biofilm formation and human reproduction, where the surrounding fluids comprise
suspensions of polymers. These polymers endow the fluid with non-Newtonian
rheological properties, such as shear-thinning and viscoelasticity. Thus, the
complex dynamics of non-Newtonian fluids presents numerous modelling
challenges, strongly motivating experimental study. Here, we demonstrate that
failing to account for "out-of-plane" effects when analysing experimental data
of undulatory swimming through a shear-thinning fluid results in a significant
overestimate of fluid viscosity around the model swimmer C. elegans. This
miscalculation of viscosity corresponds with an overestimate of the power the
swimmer expends, a key biophysical quantity important for understanding the
internal mechanics of the swimmer. As experimental flow tracking techniques
improve, accurate experimental estimates of power consumption using this
technique will arise in similar undulatory systems, such as the planar beating
of human sperm through cervical mucus, will be required to probe the
interaction between internal power generation, fluid rheology, and the
resulting waveform
Undulatory swimming in shear-thinning fluids: Experiments with C. elegans
The swimming behaviour of microorganisms can be strongly influenced by the
rheology of their fluid environment. In this manuscript, we experimentally
investigate the effects of shear-thinning viscosity on the swimming behaviour
of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods
are used to measure the swimmer's kinematic data (including propulsion speed)
and velocity fields. We find that shear-thinning viscosity modifies the
velocity fields produced by the swimming nematode but does not modify the
nematode's speed and beating kinematics. Velocimetry data show significant
enhancement in local vorticity and circulation and an increase in fluid
velocity near the nematode's tail compared to Newtonian fluids of similar
effective viscosity. These findings are compared to recent theoretical and
numerical results
Undulatory swimming in fluids with polymer networks
The motility behavior of the nematode Caenorhabditis elegans in polymeric
solutions of varying concentrations is systematically investigated in
experiments using tracking and velocimetry methods. As the polymer
concentration is increased, the solution undergoes a transition from the
semi-dilute to the concentrated regime, where these rod-like polymers entangle,
align, and form networks. Remarkably, we find an enhancement in the nematode's
swimming speed of approximately 65% in concentrated solutions compared to
semi-dilute solutions. Using velocimetry methods, we show that the undulatory
swimming motion of the nematode induces an anisotropic mechanical response in
the fluid. This anisotropy, which arises from the fluid micro-structure, is
responsible for the observed increase in swimming speed.Comment: Published 1 November 2013 in Europhysics Letter
Building Stronger Nonprofits Through Better Financial Management: Early Efforts in 26 Youth-Serving Organizations
Outlines the Financial Management in Out-of-School Time initiative to improve nonprofits' long-term financial management capacity and reform funding practices that weaken it, challenges participating nonprofits faced, progress to date, and early lessons
The direct evaluation of attosecond chirp from a streaking measurement
We derive an analytical expression, from classical electron trajectories in a
laser field, that relates the breadth of a streaked photoelectron spectrum to
the group-delay dispersion of an isolated attosecond pulse. Based on this
analytical expression, we introduce a simple, efficient and robust procedure to
instantly extract the attosecond pulse's chirp from the streaking measurement.Comment: 4 figure
Results for the response function determination of the Compact Neutron Spectrometer
The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET)
Enhancement Project, designed for fusion diagnostics in different plasma
scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good
discrimination between neutron and gamma radiation. Neutron spectrometry with a
BC501A spectrometer requires the use of a reliable, fully characterized
detector. The determination of the response matrix was carried out at the Ion
Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB).
This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV)
and a 'white field'(Emax ~17 MeV), which allows for a full characterization of
the spectrometer in the region of interest (from ~1.5 MeV to ~17 MeV. The
energy of the incoming neutrons was determined by the time of flight method
(TOF), with time resolution in the order of 1 ns. To check the response matrix,
the measured pulse height spectra were unfolded with the code MAXED and the
resulting energy distributions were compared with those obtained from TOF. The
CNS project required modification of the PTB BC501A spectrometer design, to
replace an analog data acquisition system (NIM modules) with a digital system
developed by the 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA).
Results for the new digital system were evaluated using new software developed
specifically for this project.Comment: Proceedings of FNDA 201
X,Y,Z-Waves: Extended Structures in Nonlinear Lattices
Motivated by recent experimental and theoretical results on optical X-waves,
we propose a new type of waveforms in 2D and 3D discrete media -- multi-legged
extended nonlinear structures (ENS), built as arrays of lattice solitons (tiles
or stones, in the 2D and 3D cases, respectively). First, we study the stability
of the tiles and stones analytically, and then extend them numerically to
complete ENS forms for both 2D and 3D lattices. The predicted patterns are
relevant to a variety of physical settings, such as Bose-Einstein condensates
in deep optical lattices, lattices built of microresonators, photorefractive
crystals with optically induced lattices (in the 2D case) and others.Comment: 4 pages, 4 figure
- …
