3,020 research outputs found
Functional biases in GRB's spectral parameter correlations
Gamma Ray Bursts (GRBs) show evidence of different spectral shapes, light
curves, duration, host galaxies and they explode within a wide redshift range.
However, the most of them seems to follow very tight correlations among some
observed quantities relating to their energetic. If true, these correlations
have significant implications on burst physics, giving constraints on
theoretical models. Moreover, several suggestions have been made to use these
correlations in order to calibrate GRBs as standard candles and to constrain
the cosmological parameters. We investigate the cosmological relation between
low energy index in GRBs prompt spectra and the redshift . We
present a statistical analysis of the relation between the total isotropic
energy and the peak energy (also known as Amati relation) in
GRBs spectra searching for possible functional biases. Possible implications on
the vs relation of the vs correlation are
evaluated. We used MonteCarlo simulations and the boostrap method to evaluate
how large are the effects of functional biases on the vs . We
show that high values of the linear correlation coefficent, up to about 0.8, in
the vs relation are obtained for random generated samples of
GRBs, confirming the relevance of functional biases. Astrophysical consequences
from vs relation are then to be revised after a more accurate
and possibly bias free analysis.Comment: 6 pages, 6 figures, conference poster session: "070228: The Next
Decade of Gamma-Ray Burst Afterglows", Amsterdam, March 2007, MNRAS submitte
Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements
The complex elastic compliance and dielectric susceptibility of
(Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the
composition range between pure NBT and the morphotropic phase boundary
included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the
rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the
determination of the tetragonal region of the phase diagram, up to now
impossible due to the strong lattice disorder and small distortions and
polarizations involved. In spite of ample evidence of disorder and structural
heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C
transition merges into the diffuse and relaxor-like transition associated with
broad maxima of the dielectric and elastic susceptibilities. An attempt is made
at relating the different features in the anelastic and dielectric curves to
different modes of octahedral rotations and polar cation shifts. The
possibility is also considered that the cation displacements locally have
monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.
GRBs and the thermalization process of electron-positron plasmas
We discuss the temporal evolution of the pair plasma created in Gamma-Ray
Burst sources. A particular attention is paid to the relaxation of the plasma
into thermal equilibrium. We also discuss the connection between the dynamics
of expansion and the spatial geometry of the plasma. The role of the baryonic
loading parameter is emphasized.Comment: 4 pages, 3 figures, in the Proceedings of the "Gamma Ray Bursts 2007"
meeting, November 5-9, 2007, Santa Fe, New Mexico, US
Efficient numerical diagonalization of hermitian 3x3 matrices
A very common problem in science is the numerical diagonalization of
symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be
too inefficient if the number of matrices is large, we study several
alternatives. We consider optimized implementations of the Jacobi, QL, and
Cuppen algorithms and compare them with an analytical method relying on
Cardano's formula for the eigenvalues and on vector cross products for the
eigenvectors. Jacobi is the most accurate, but also the slowest method, while
QL and Cuppen are good general purpose algorithms. The analytical algorithm
outperforms the others by more than a factor of 2, but becomes inaccurate or
may even fail completely if the matrix entries differ greatly in magnitude.
This can mostly be circumvented by using a hybrid method, which falls back to
QL if conditions are such that the analytical calculation might become too
inaccurate. For all algorithms, we give an overview of the underlying
mathematical ideas, and present detailed benchmark results. C and Fortran
implementations of our code are available for download from
http://www.mpi-hd.mpg.de/~globes/3x3/ .Comment: 13 pages, no figures, new hybrid algorithm added, matches published
version, typo in Eq. (39) corrected; software library available at
http://www.mpi-hd.mpg.de/~globes/3x3
Exact Green's Function of the reversible diffusion-influenced reaction for an isolated pair in 2D
We derive an exact Green's function of the diffusion equation for a pair of
spherical interacting particles in 2D subject to a back-reaction boundary
condition.Comment: 6 pages, 1 Figur
Gamma-ray Bursts, Classified Physically
From Galactic binary sources, to extragalactic magnetized neutron stars, to
long-duration GRBs without associated supernovae, the types of sources we now
believe capable of producing bursts of gamma-rays continues to grow apace. With
this emergent diversity comes the recognition that the traditional (and newly
formulated) high-energy observables used for identifying sub-classes does not
provide an adequate one-to-one mapping to progenitors. The popular
classification of some > 100 sec duration GRBs as ``short bursts'' is not only
an unpalatable retronym and syntactically oxymoronic but highlights the
difficultly of using what was once a purely phenomenological classification to
encode our understanding of the physics that gives rise to the events. Here we
propose a physically based classification scheme designed to coexist with the
phenomenological system already in place and argue for its utility and
necessity.Comment: 6 pages, 3 figures. Slightly expanded version of solicited paper to
be published in the Proceedings of ''Gamma Ray Bursts 2007,'' Santa Fe, New
Mexico, November 5-9. Edited by E. E. Fenimore, M. Galassi, D. Palme
GRB 070714B - Discovery of the Highest Spectroscopically Confirmed Short Burst Redshift
Gemini Nod & Shuffle spectroscopy on the host of the short GRB 070714B shows
a single emission line at 7167 angstroms which, based on a grizJHK photometric
redshift, we conclude is the 3727 angstrom [O II] line. This places the host at
a redshift of z=.923 exceeding the previous record for the highest
spectroscopically confirmed short burst redshift of z=.546 held by GRB 051221.
This dramatically moves back the time at which we know short bursts were being
formed, and suggests that the present evidence for an old progenitor population
may be observationally biased.Comment: Conference procedings for Gamma Ray Bursts 2007 November 5-9, 2007
Santa Fe, New Mexico (4 pages, 2 figures
Extension of charge-state-distribution calculations for ion-solid collisions towards low velocities and many-electron ions
Knowledge of the detailed evolution of the whole charge-state distribution of projectile ions colliding with targets is required in several fields of research such as material science and atomic and nuclear physics but also in accelerator physics, and in particular in regard to the several foreseen large-scale facilities. However, there is a lack of data for collisions in the nonperturbative energy domain and that involve many-electron projectiles. Starting from the etacha model we developed [Rozet, Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996)10.1016/0168-583X(95)00800-4], we present an extension of its validity domain towards lower velocities and larger distortions. Moreover, the system of rate equations is able to take into account ions with up to 60 orbital states of electrons. The computed data from the different new versions of the etacha code are compared to some test collision systems. The improvements made are clearly illustrated by 28.9MeVu-1Pb56+ ions, and laser-generated carbon ion beams of 0.045 to 0.5MeVu-1, passing through carbon or aluminum targets, respectively. Hence, those new developments can efficiently sustain the experimental programs that are currently in progress on the "next-generation" accelerators or laser facilities.Fil: Lamour, E.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Fainstein, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Prigent, C.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Ramirez, C. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rozet, J. P.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Trassinelli, M.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Vernhet, D.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; Franci
A spectral function tour of electron-phonon coupling outside the Migdal limit
We simulate spectral functions for electron-phonon coupling in a filled band
system - far from the asymptotic limit often assumed where the phonon energy is
very small compared to the Fermi energy in a parabolic band and the Migdal
theorem predicting 1+lambda quasiparticle renormalizations is valid. These
spectral functions are examined over a wide range of parameter space through
techniques often used in angle-resolved photoemission spectroscopy (ARPES).
Analyzing over 1200 simulations we consider variations of the microscopic
coupling strength, phonon energy and dimensionality for two models: a
momentum-independent Holstein model, and momentum-dependent coupling to a
breathing mode phonon. In this limit we find that any `effective coupling',
lambda_eff, inferred from the quasiparticle renormalizations differs from the
microscopic dimensionless coupling characterizing these Hamiltonians, lambda,
and could drastically either over- or under-estimate it depending on the
particular parameters and model. In contrast, we show that perturbation theory
retains good predictive power for low coupling and small momenta, and that the
momentum-dependence of the self-energy can be revealed via the relationship
between velocity renormalization and quasiparticle strength. Additionally we
find that (although not strictly valid) it is often possible to infer the
self-energy and bare electronic structure through a self-consistent
Kramers-Kronig bare-band fitting; and also that through lineshape alone, when
Lorentzian, it is possible to reliably extract the shape of the imaginary part
of a momentum-dependent self-energy without reference to the bare-band.Comment: 15 pages, 11 figures. High resolution available here:
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/sf_tour.pd
- …
