314 research outputs found

    Étude de la production des ions bromate lors de l'ozonation des eaux de la Banlieue de Paris : choix du mode d'ozonation et variation des param tres physico-chimiques

    Get PDF
    Cette étude a permis d'évaluer l'importance de la concentration en ions bromure, de la température et de la nature de la Matière Organique Naturelle (MON) sur la production des ions bromate en s'appuyant sur des expériences conduites en laboratoire et sur pilote semi-industriel (Centre d'Essais de Méry-sur-Oise).Trois campagnes d'ozonation effectuées en parallèle à Méry-sur-Oise et au LCEE (Laboratoire de Chimie de l'Eau et de l'Environnement) sur des eaux filtrées sable, ont montré que les expériences conduites en laboratoire et sur pilote semi-industriel mènent à des résultats similaires, soit une relation linéaire [BrO3-]=f (C∙τ) vérifiant une pente identique pour des conditions expérimentales données (teneur en ions bromure, température, origine de l'eau). Ces travaux ont montré de façon nouvelle qu'une faible variation de la concentration en ions bromure (± 15 à 20 µg.L-1) suffisait à modifier significativement la formation des ions bromate. A C∙τ=10 et T=21°C, la production des ions bromate est passée de 16 à 27 µg.L-1 pour une augmentation de la concentration en ions bromure de 80 à 95 µg.L-1. Les résultats obtenus ont montré de plus que la température est un facteur important puisqu'une différence de 8°C (13 à 21°C) a entraîné, pour la même eau (80 µg.L-1 d'ions bromure, C∙τ=10), une augmentation de la concentration en ions bromate de 10 à 16 µg.L-1. Pour d'autres eaux (Seine, Marne et Oise), trois autres campagnes conduites avec des eaux clarifiées ont été effectuées après ajustement de la teneur en ions bromure et régulation de la température, ces trois eaux présentant par ailleurs des caractéristiques similaires en ce qui concerne le pH et l'alcalinité. A C∙τ équivalent, la production d'ions bromate s'est avérée significativement plus faible pour l'eau de l'Oise que pour les deux autres eaux. La nature de la MON pourrait donc avoir une influence notable sur la formation des ions bromate.The publication of Kurokawa et al. in 1990 confirming the toxicity of bromate of rats and mice, initiated the research effort that was internationally conducted during the last seven years to better understand the reaction mechanisms of bromate formation during the ozonation of natural waters. Based on the research findings regarding the effect of a number of parameters (bromide, ozone dose, pH, temperature, alkalinity, DOC content, ammonia, ...), predictive models (empirical and reaction kinetic based models), including molecular and/or radical pathways, have been developed with more or less success. Complementary results are still needed to better understand this complex mechanism.The main objective of our work was to evaluate how the seasonal variation of the physical chemical characteristics of Paris-area source waters (i.e. bromide content, temperature, natural organic matter) can affect the production of bromate during ozonation. In order to confirm that lab-scale experiments could be proposed to develop such research program, parallel tests were first conducted at the bench- and pilot-scale based on comparable C∙τ conditions. The lab-scale reactor was a 380 ml glass column (internal diameter: 0.02 m; height: 1.2 m) equipped with a water jacket to allow temperature to be varied and maintained. These reactor was used as a continuous flow reactor with recirculation. The pilot-scale ozonation contactor installed at the Méry sur Oise water treatment plant was comprised of four 30-liter columns in series (diameter: 0.1m ; height: 4m). The first column is used as the application column while the three others are used as residence column. The results have shown that lab-scale ozonation experiments conducted on Méry sur Oise sand filtered water led to similar results compared to pilot ozonation conducted on the same water and at the same temperature (sampled the same day) using the Méry sur Oise pilot-scale reactor. For applied C∙τ that ranged from 4 to 20 mg O3/L.min, similar linear relationship between bromate formation and applied C∙τ was obtained with the two reactors.A survey conducted on the Oise River has shown that the bromide concentration ranged from 40 µg/L (winter period) to 80 µg/L (summer period). If it is already well known that higher the bromide content, higher the bromate formation, our work has also pointed out that even a small increase of the bromide concentration from 80 to 95 µg/L (15 µg/L of bromide spiked as KBr) can significantly impact the bromate formation (same experimental conditions) that, as an example, increased from 16 to 27 µg/L for C.t of 10 at 21 °C.The temperature of the Oise river can vary from 5 °C up to 25 °C. Using carefully controlled temperature conditions, one can observed that the slope of the bromate production versus applied C∙τ increased with increasing temperature (same water). For example, the production of bromate during the ozonation (applied C∙τ=10) of the Méry sur Oise sand filtered water was 7, 10 and 16 µg/L for 5, 13 and 21 °C, respectively. Complementary experiments, have shown that the impact of the variation of the initial bromide concentration was proportionally more important for low-temperature water (5 to 13 °C) than for moderate-temperature water (20 °C).The origin and nature of the water is considered to play a significant role on the formation of bromate during ozonation, however few studies have evaluated the importance of these parameters using carefully controlled experimental conditions. In order to better define how important is the change in bromate production with the modification of the quality of the Paris suburbs water sources, especially the organic content (nature and concentration of the NOM), two sets of experiments were conducted.In the first part of the work, the Méry sur Oise sand filtered water was sampled at three different periods of the year 1996 (June, July and December), and the ozonation experiments were conducted at the same temperature (21 °C) after bromide concentration was adjust to 80 µg/L. The three water samples had the same pH and did not contain ammonia. Significant differences were observed in the bromate production, showing a larger production with the winter water as compared to the summer water. The fact that the winter water was enriched in DOC (3.7 mg/L of DOC) as compared to the two others (2.6 - 2.7 mg/L of DOC) may explain this difference since a larger ozone dose was probably necessary (ozone transfert not controlled because of the small size of the lab-scale reactor) to reach the same applied C∙τ due to a higher ozone consumption from the natural organic matter. The slightly lower alkalinity of the winter sample (200 mg/L as CaCO3 as compared to 250 mg/L CaCO3 for the summer samples) could have led to a less pronounced scavenger effect, condition that favors the radical pathway which is generally predominant. However, it is also known that carbonate species can also promote the formation of bromate due to the production of carbonate radicals. Comparing the results obtained with the water samples collected during the summer period, more bromate was produced in July than in June. The higher hydrophobic character (more aromatic in character) of the NOM of the water sampled in July (SUVA=2.15) as compared to the June sample (SUVA=1.88), characteristic that favor the ozone consumption and consequently the OH radical production, may justify this finding.In the second part of the work, the bromate formation obtained during the ozonation of the three major water sources of the Paris suburbs (sampled after clarification), Oise River, Marne River and Seine River, was compared (same temperature) after the bromide content was adjust to 80 µg/L. Similar results were obtained with the clarified Marne river and Seine River, the two waters showing the same physical chemical characteristics (2.2 and 2.5 mg/L of DOC; pH 7.9 and 7.8; Alkalinity: 225 and 210 mg/L as CaCO3). A lower production of bromate as a function of the applied C∙τ was observed with the clarified Oise river, result that is in contradiction with our previous hypotheses since this water source showed the highest DOC content, the highest SUVA and the lowest alkalinity among the three waters studied.More work needs to be done to better understand the impact of the origin and nature of the NOM on the bromate formation mechanisms. As a general conclusion, this work also confirmed that the physical chemical characteristics of source water (DOC, temperature, alkalinity, bromide content,…) are more important factors as compared to the hydraulic characteristics of the reactor.Keywords

    Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering

    Full text link
    Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.Comment: 41 pages (MS, SI and Data), 16 figures (MS and SI), 6 tables (SI and Data). Journal article manuscrip

    Influence of Gamma-Ray Emission on the Isotopic Composition of Clouds in the Interstellar Medium

    Full text link
    We investigate one mechanism of the change in the isotopic composition of cosmologically distant clouds of interstellar gas whose matter was subjected only slightly to star formation processes. According to the standard cosmological model, the isotopic composition of the gas in such clouds was formed at the epoch of Big Bang nucleosynthesis and is determined only by the baryon density in the Universe. The dispersion in the available cloud composition observations exceeds the errors of individual measurements. This may indicate that there are mechanisms of the change in the composition of matter in the Universe after the completion of Big Bang nucleosynthesis. We have calculated the destruction and production rates of light isotopes (D, 3He, 4He) under the influence of photonuclear reactions triggered by the gamma-ray emission from active galactic nuclei (AGNs). We investigate the destruction and production of light elements depending on the spectral characteristics of the gamma-ray emission. We show that in comparison with previous works, taking into account the influence of spectral hardness on the photonuclear reaction rates can increase the characteristic radii of influence of the gamma-ray emission from AGNs by a factor of 2-8. The high gamma-ray luminosities of AGNs observed in recent years increase the previous estimates of the characteristic radii by two orders of magnitude. This may suggest that the influence of the emission from AGNs on the change in the composition of the medium in the immediate neighborhood (the host galaxy) has been underestimated.Comment: 13 pages, 13 figures, 3 table

    Evaluating Kinship Care Alternatives: A Comparison of a Private Initiative to Traditional State Services

    Get PDF
    Multiple stressors on the child welfare system have forced innovative solutions to the overburdened foster care program. A promising alternative is kinship care, in which children are placed with biological relatives. Proponents cite the opportunity to place the child in familiar surroundings, the natural access to additional family resources, and the degree to which it is sensitive to the norms and values of non-dominant cultural groups. Various models of kinship care have been implemented in several jurisdictions, yet little or no research has been done to determine which alternatives are the most effective. This paper addresses that deficit. It reports the results of a study that compares stability of placement outcomes between a program operated by a private,not-for-profit organization (n=60) and a more traditional program (n=79) operated by a state child welfare agency. Results support the use of the private alternative over the more traditional state-operated program

    Opera and poison : a secret and enjoyable approach to teaching and learning chemistry

    Get PDF
    The storyline of operas, with historical or fictional characters, often include potions and poisons. This has prompted a study of the chemistry behind some operatic plots. The results were originally presented as a lecture given at the University of Minho in Portugal, within the context of the International Year of Chemistry. The same lecture was subsequently repeated at other universities as an invited lecture for science students and in public theaters for wider audiences. The lecture included a multimedia and interactive content that allowed the audience to listen to arias and to watch video clips with selected scenes extracted from operas. The present article, based on the lecture, demonstrates how chemistry and opera can be related and may also serve as a source of motivation and inspiration for chemistry teachers looking for alternative pedagogical approaches. Moreover, the lecture constitutes a vehicle that transports chemistry knowledge to wider audiences through examples of everyday molecules, with particular emphasis on natural products.The author is pleased to express his gratitude to Jorge Calado and Michael John Smith for useful discussions. The author also thanks the reviewers of the manuscript for their helpful comments and suggestions. Thanks are due to the Foundation for Science and Technology (FCT,Portugal), QREN and FEDER/EU for financial support through the research centers, CQ/UM PEst-C/QUI/UI0686/2011. Ciencia Viva, Portugal, is also acknowledged for financial support of the activities organized by the University of Minho during the International Year of Chemistry. The author also expresses his gratitude to Ana Paula Ferreira and Andre Cunha Leal from RTP Antena 2 who contributed immensely to the popularization of the lecture on which this paper is based on

    Ultramafic geoecology of South and Southeast Asia

    Get PDF
    Globally, ultramafic outcrops are renowned for hosting foras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafic regoliths are generally nutrient-deficient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occurrences of ultramafic regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of endemism, and the species most threatened. However, site-specific studies provide insights to the ultramafic geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafic regions differs substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafic mountaintops, where the combined forces of edaphic and climatic factors intersect, obligate ultramafic species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafic-associated habitats in the region. The geoecology of the large ultramafic outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation

    Stage-dependent localization of a novel gene product of the malaria parasite, Plasmodium falciparum

    Get PDF
    A novel Plasmodium falciparum gene, MB2, was identified by screening a sporozoite cDNA library with the serum of a human volunteer protected experimentally by the bites of P. falciparum-infected and irradiated mosquitoes. The single-exon, single-copy MB2 gene is predicted to encode a protein with an Mr of 187,000. The MB2 protein has an amino-terminal basic domain, a central acidic domain, and a carboxyl-terminal domain with similarity to the GTP-binding domain of the prokaryotic translation initiation factor 2. MB2 is expressed in sporozoites, the liver, and blood-stage parasites and gametocytes. The MB2 protein is distributed as a ~120-kDa moiety on the surface of sporozoites and is imported into the nucleus of blood-stage parasites as a ~66-kDa species. Proteolytic processing is favored as the mechanism regulating the distinct subcellular localization of the MB2 protein. This differential localization provides multiple opportunities to exploit the MB2 gene product as a vaccine or therapeutic target

    USU Teaching Documentation: Dossiers from the Mentoring Program

    Get PDF
    The nation\u27s land grant institutions were founded on the principle of access for the general public to the knowledge gained through research and creative activity fostered in higher education. Central to our access mission is our dedication to teaching and learning that is informed by research and discovery, both of which must result, at least in part, from our engagement with our external constituents. That teaching and learning informs our research and vice versa; our research informs and aids in our teaching mission. This work, compiled by Professors Maria Luisa Spicer-Escalante and Cathy Ferrand Bullock, is focused on how the best, highly informed teaching is accomplished when done in an intentional manner. That intentional process helps the best university educators thoughtfully build their teaching story in an organized manner. Educators think about how they can successfully reach and engage their appropriate student audiences (or mentees), what they hope to accomplish, and how they intend to accomplish their goals. Further, as learning outcomes are identified and established, first-rate methods for course design, content inclusion, and continuous improvement can be outlined. Those of us who follow these intentional principles may then detail our growth and success along the way as teachers in the development of documents that tell our stories. Undoubtedly, the ability to clearly document and articulate that story will help academic personnel add to their tenure and promotion preparation in a very meaningful way. But as or even more important is the opportunity to describe these journeys with all the efforts, large and small, of improving their product in terms of learning outcomes and student growth and success. The nuggets of wisdom compiled by Professors Spicer-Escalante and Bullock, in USU Teaching Documentation: Dossiers from the Mentoring Program, will help teachers across the board from the new lecturer or assistant professor to the experienced professor dive into their teaching programs and find ways to continuously experiment and refine their approaches to our critically important student audiences. Good luck, teach on, and successfully document some of the most important work you all do! Frank Galey Executive Vice President and Provost Utah State University 2019https://digitalcommons.usu.edu/ua_faculty/1000/thumbnail.jp
    corecore