604 research outputs found

    A tabu search heuristic for the Equitable Coloring Problem

    Get PDF
    The Equitable Coloring Problem is a variant of the Graph Coloring Problem where the sizes of two arbitrary color classes differ in at most one unit. This additional condition, called equity constraints, arises naturally in several applications. Due to the hardness of the problem, current exact algorithms can not solve large-sized instances. Such instances must be addressed only via heuristic methods. In this paper we present a tabu search heuristic for the Equitable Coloring Problem. This algorithm is an adaptation of the dynamic TabuCol version of Galinier and Hao. In order to satisfy equity constraints, new local search criteria are given. Computational experiments are carried out in order to find the best combination of parameters involved in the dynamic tenure of the heuristic. Finally, we show the good performance of our heuristic over known benchmark instances

    A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

    Full text link
    The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs

    Optimality Clue for Graph Coloring Problem

    Full text link
    In this paper, we present a new approach which qualifies or not a solution found by a heuristic as a potential optimal solution. Our approach is based on the following observation: for a minimization problem, the number of admissible solutions decreases with the value of the objective function. For the Graph Coloring Problem (GCP), we confirm this observation and present a new way to prove optimality. This proof is based on the counting of the number of different k-colorings and the number of independent sets of a given graph G. Exact solutions counting problems are difficult problems (\#P-complete). However, we show that, using only randomized heuristics, it is possible to define an estimation of the upper bound of the number of k-colorings. This estimate has been calibrated on a large benchmark of graph instances for which the exact number of optimal k-colorings is known. Our approach, called optimality clue, build a sample of k-colorings of a given graph by running many times one randomized heuristic on the same graph instance. We use the evolutionary algorithm HEAD [Moalic et Gondran, 2018], which is one of the most efficient heuristic for GCP. Optimality clue matches with the standard definition of optimality on a wide number of instances of DIMACS and RBCII benchmarks where the optimality is known. Then, we show the clue of optimality for another set of graph instances. Optimality Metaheuristics Near-optimal

    A Recombination-Based Tabu Search Algorithm for the Winner Determination Problem

    Get PDF
    Abstract. We propose a dedicated tabu search algorithm (TSX_WDP) for the winner determination problem (WDP) in combinatorial auctions. TSX_WDP integrates two complementary neighborhoods designed re-spectively for intensification and diversification. To escape deep local optima, TSX_WDP employs a backbone-based recombination opera-tor to generate new starting points for tabu search and to displace the search into unexplored promising regions. The recombination operator operates on elite solutions previously found which are recorded in an global archive. The performance of our algorithm is assessed on a set of 500 well-known WDP benchmark instances. Comparisons with five state of the art algorithms demonstrate the effectiveness of our approach

    An Analysis of Solution Properties of the Graph Coloring Problem

    Get PDF
    This paper concerns the analysis of solution properties of the Graph Coloring Problem. For this purpose, we introduce a property based on the notion of representative sets which are sets of vertices that are always colored the same in a set of solutions. Experimental results on well-studied DIMACS graphs show that many of them contain such sets and give interesting information about the diversity of the solutions. We also show how such an analysis may be used to improve a tabu search algorithm

    Deep Neural Networks for Inverse Problems with Pseudodifferential Operators: An Application to Limited-Angle Tomography

    Get PDF
    We propose a novel convolutional neural network (CNN), called \Psi DONet, designed for learning pseudodifferential operators (\Psi DOs) in the context of linear inverse problems. Our starting point is the iterative soft thresholding algorithm (ISTA), a well-known algorithm to solve sparsity-promoting minimization problems. We show that, under rather general assumptions on the forward operator, the unfolded iterations of ISTA can be interpreted as the successive layers of a CNN, which in turn provides fairly general network architectures that, for a specific choice of the parameters involved, allow us to reproduce ISTA, or a perturbation of ISTA for which we can bound the coefficients of the filters. Our case study is the limited-angle X-ray transform and its application to limited-angle computed tomography (LA-CT). In particular, we prove that, in the case of LA-CT, the operations of upscaling, downscaling, and convolution, which characterize our \Psi DONet and most deep learning schemes, can be exactly determined by combining the convolutional nature of the limited-angle Xray transform and basic properties defining an orthogonal wavelet system. We test two different implementations of \Psi DONet on simulated data from limited-angle geometry, generated from the ellipse data set. Both implementations provide equally good and noteworthy preliminary results, showing the potential of the approach we propose and paving the way to applying the same idea to other convolutional operators which are \Psi DOs or Fourier integral operators

    Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF

    Get PDF
    M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
    corecore