634 research outputs found

    Partial radiogenic heat model for Earth revealed by geoneutrino measurements

    Get PDF
    The Earth has cooled since its formation, yet the decay of radiogenic isotopes, and in particular uranium, thorium and potassium, in the planet’s interior provides a continuing heat source. The current total heat flux from the Earth to space is 44:2±1.0 TW, but the relative contributions from residual primordial heat and radiogenic decay remain uncertain. However, radiogenic decay can be estimated from the flux of geoneutrinos, electrically neutral particles that are emitted during radioactive decay and can pass through the Earth virtually unaffected. Here we combine precise measurements of the geoneutrino flux from the Kamioka Liquid-Scintillator Antineutrino Detector, Japan, with existing measurements from the Borexino detector, Italy.We find that decay of uranium-238 and thorium-232 together contribute 20.0^(+8.8)_(-8.6)TW to Earth’s heat flux. The neutrinos emitted from the decay of potassium-40 are below the limits of detection in our experiments, but are known to contribute 4TW. Taken together, our observations indicate that heat from radioactive decay contributes about half of Earth’s total heat flux. We therefore conclude that Earth’s primordial heat supply has not yet been exhausted

    Constraints on θ_(13) from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND

    Get PDF
    We present new constraints on the neutrino oscillation parameters Δm^2_(21), θ_(12), and θ_(13) from a three flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10^(32) target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis (θ_(13) = 0) of the KamLAND and solar data yields the best-fit values tan^2θ_(12) = 0.444^(+0.036)_(-0.030) and Δm^2_(21) = 7.50^(+0.19)_(-0.20) x 10^(-5) eV^2; a three-flavor analysis with θ13 as a free parameter yields the best-fit values tan^2θ_(12) = 0.452^(+0.035)_(-0.033), Δm^2_(21) = 7.50^(+0.19)_(-0.20) x 10^(-5) eV^2, and sin^2θ_(13) = 0.020^(+0.016)_(-0.016). This θ_(13) interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global θ_(13) analysis, incorporating the CHOOZ, atmospheric, and accelerator data, which indicates sin^2θ_(13) = 0.009^(+0.013)-_(0.007). A nonzero value is suggested, but only at the 79% C.L

    Nuclear matrix elements for neutrinoless double-beta decay and double-electron capture

    Full text link
    A new generation of neutrinoless double beta decay experiments with improved sensitivity is currently under design and construction. They will probe inverted hierarchy region of the neutrino mass pattern. There is also a revived interest to the resonant neutrinoless double-electron capture, which has also a potential to probe lepton number conservation and to investigate the neutrino nature and mass scale. The primary concern are the nuclear matrix elements. Clearly, the accuracy of the determination of the effective Majorana neutrino mass from the measured 0\nu\beta\beta-decay half-life is mainly determined by our knowledge of the nuclear matrix elements. We review recent progress achieved in the calculation of 0\nu\beta\beta and 0\nu ECEC nuclear matrix elements within the quasiparticle random phase approximation. A considered self-consistent approach allow to derive the pairing, residual interactions and the two-nucleon short-range correlations from the same modern realistic nucleon-nucleon potentials. The effect of nuclear deformation is taken into account. A possibility to evaluate 0\nu\beta\beta-decay matrix elements phenomenologically is discussed.Comment: 24 pages; 80 references. arXiv admin note: substantial text overlap with arXiv:1101.214

    Measurement of the double-\beta decay half-life of ^{136}Xe with the KamLAND-Zen experiment

    Full text link
    We present results from the KamLAND-Zen double-beta decay experiment based on an exposure of 77.6 days with 129 kg of 136^{136}Xe. The measured two-neutrino double-beta decay half-life of 136^{136}Xe is T1/22ν=2.38±0.02(stat)±0.14(syst)×1021T_{1/2}^{2\nu} = 2.38 \pm 0.02(stat) \pm 0.14(syst) \times 10^{21} yr, consistent with a recent measurement by EXO-200. We also obtain a lower limit for the neutrinoless double-beta decay half-life, T1/20ν>5.7×1024T_{1/2}^{0\nu} > 5.7 \times 10^{24} yr at 90% confidence level (C.L.), which corresponds to almost a five-fold improvement over previous limits.Comment: 6 pages, 4 figures. Version as published in PR

    A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Full text link
    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.Comment: Revised author affiliations, corrected typos, made minor improvements to text, and revised reference

    7Be Solar Neutrino Measurement with KamLAND

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582 +/- 90 (kton-day)^-1, which corresponds to a 862 keV 7Be solar neutrino flux of (3.26 +/- 0.50) x 10^9 cm^-2s^-1, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a nu_e survival probability of 0.66 +/- 0.14 is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82 +/- 0.98) x 10^9 cm^-2s^-1, which is consistent with the standard solar model predictions.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND

    Full text link
    We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author lis

    Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters

    Get PDF
    We present the results of a global neutrino oscillation data analysis within the three-flavour framework. We include latest results from the MINOS long-baseline experiment (including electron neutrino appearance as well as anti-neutrino data), updating all relevant solar (SK II+III), atmospheric (SK I+II+III) and reactor (KamLAND) data. Furthermore, we include a recent re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These results have important consequences for the analysis of reactor experiments and in particular for the status of the mixing angle θ13\theta_{13}. In our recommended default analysis we find from the global fit that the hint for non-zero θ13\theta_{13} remains weak, at 1.8σ\sigma for both neutrino mass hierarchy schemes. However, we discuss in detail the dependence of these results on assumptions concerning the reactor neutrino analysis.Comment: 15 pages, 10 figures and 2 tables, v2: corrected version, main conclusions unchanged, references adde
    corecore