12,140 research outputs found
Think Different: Applying the Old Macintosh Mantra to the Computability of the SUSY Auxiliary Field Problem
Starting with valise supermultiplets obtained from 0-branes plus field
redefinitions, valise adinkra networks, and the "Garden Algebra," we discuss an
architecture for algorithms that (starting from on-shell theories and, through
a well-defined computation procedure), search for off-shell completions. We
show in one dimension how to directly attack the notorious "off-shell auxiliary
field" problem of supersymmetry with algorithms in the adinkra network-world
formulation.Comment: 28 pages, 1 figur
D=2 N=(2,2) Semi Chiral Vector Multiplet
We describe a new 1+1 dimensional N=(2,2) vector multiplet that naturally
couples to semi chiral superfields in the sense that the gauged supercovariant
derivative algebra is only consistent with imposing covariantly semi chiral
superfield constraints. It has the advantages that its prepotentials shift by
semi chiral superfields under gauge transformations. We also see that the
multiplet relates the chiral vector multiplet with the twisted chiral vector
multiplet by reducing to either multiplet under appropriate limits without
being reducible in terms of the chiral and twisted chiral vector multiplet.
This is explained from the superspace geometrical point of view as the result
of possessing a symmetry under the discrete supercoordinate transformation that
is responsible for mirror copies of supermultiplets. We then describe how to
gauge a non linear sigma model with semi chiral superfields using the
prepotentials of the new multiplet.Comment: 15 page
LDR structural experiment definition
A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment
Risk of Increased Fragmentation Events Due to Low Altitude Large Constellation Spacecraft
Orbital debris experts and industry leaders are concerned about the added hazard that thousands of additional spacecraft would have on the future orbital debris environment. Large constellations proposals plan to deploy spacecraft at altitudes from 1100 km to 1300 km, where fragmentation debris can take thousands of years or longer to decay naturally, while other proposals include deploying spacecraft at station-keeping altitudes from 300 km to 600 km. Although these lower altitude spacecraft are compliant with the 25-year rule, there is still an increased risk of accidental explosions generating high velocity fragments that could damage international spacecraft assets. The NASA Orbital Debris Program Office (ODPO) has conducted several parametric studies that examine the potential negative environmental impacts of large constellation deployments. This study addresses the lower altitude constellations and the potential risk that they impose on the future environment during mission operations. The projected future environment is generated as the average of 100 LEGEND Monte Carlo (MC) simulation runs while adjusting parameters such as average probability of explosion and operational lifetime per constellation. Results of the effect of accidental explosions of large constellation spacecraft on the environment below 600 km altitude are analyzed
The early expansion and evolutionary dynamics of POU class genes.
The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency
An ecological study of Bush stone-curlews Burhinus grallarius on Kangaroo Island, South Australia
Documents the historical distribution and subsequent decline of bush stone-curlews in South Australia, determines their current distribution and status on Kangaroo Island, their home range sizes and movements, the characteristics of foraging habitat, day roost areas and nest sites and the availability of habitat, the diet and food resources, and potential threats to the population. As a result of the findings of this survey, bush stone-curlews have been downgraded from endangered to vulnerable in South Australia.Thesis (M.Sc.) -- University of Adelaide, Dept. of Environmental Biology, 2002
4D, N = 1 Supersymmetry Genomics (I)
Presented in this paper the nature of the supersymmetrical representation
theory behind 4D, N = 1 theories, as described by component fields, is
investigated using the tools of Adinkras and Garden Algebras. A survey of
familiar matter multiplets using these techniques reveals they are described by
two fundamental valise Adinkras that are given the names of the cis-Valise
(c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, N
= 1 component descriptions of supermultiplets are associated with two integers
- the numbers of c-V and t-V Adinkras that occur in the representation.Comment: 53 pages, 19 figures, Report-II of SSTPRS 2008 Added another chapter
for clarificatio
The N=2 Super Yang-Mills Low-Energy Effective Action at Two Loops
We have carried out a two loop computation of the low-energy effective action
for the four-dimensional N=2 supersymmetric Yang-Mills system coupled to
hypermultiplets, with the chiral superfields of the vector multiplet lying in
an abelian subalgebra. We have found a complete cancellation at the level of
the integrands of Feynman amplitudes, and therefore the two loop contribution
to the action, effective or Wilson, is identically zero.Comment: 8 pages, Latex, 2 .eps figure
Comparison of Some Exact and Perturbative Results for a Supersymmetric SU() Gauge Theory
We consider vectorial, asymptotically free supersymmetric
SU() gauge theories with copies of massless chiral super fields in
various representations and study how perturbative predictions for the lower
boundary of the infrared conformal phase, as a function of , compare with
exact results. We make use of two-loop and three-loop calculations of the beta
function and anomalous dimension of the quadratic chiral super field operator
product for this purpose. The specific chiral superfield contents that we
consider are copies of (i) , (ii) , (iii) ,
and (iv) , where , , , and denote,
respectively, the fundamental, adjoint, and symmetric and antisymmetric rank-2
tensor representations. We find that perturbative results slightly overestimate
the value of relative to the respective exact results for these
representations, i.e., slightly underestimate the interval in for which
the theory has infrared conformal behavior. Our results provide a measure of
how closely perturbative calculations reproduce exact results for these
theories.Comment: 16 pages, 3 figure
Supersymmetric Fluid Dynamics
Recently Navier-Stokes (NS) equations have been derived from the duality
between the black branes and a conformal fluid on the boundary of AdS_5.
Nevertheless, the full correspondence has to be established between solutions
of supergravity in AdS_5 and supersymmetric field theories on the boundary.
That prompts the construction of NS equations for a supersymmetric fluid. In
the framework of rigid susy, there are several possibilities and we propose one
candidate. We deduce the equations of motion in two ways: both from the
divergenless condition on the energy-momentum tensor and by a suitable
parametrization of the auxiliary fields. We give the complete component
expansion and a very preliminary analysis of the physics of this supersymmetric
fluid.Comment: 24 pages, Latex2
- …
