642 research outputs found

    Fingerprints of classical diffusion in open 2D mesoscopic systems in the metallic regime

    Full text link
    We investigate the distribution of the resonance widths P(Γ){\cal P}(\Gamma) and Wigner delay times P(τW){\cal P}(\tau_W) for scattering from two-dimensional systems in the diffusive regime. We obtain the forms of these distributions (log-normal for large τW\tau_W and small Γ\Gamma, and power law in the opposite case) for different symmetry classes and show that they are determined by the underlying diffusive classical dynamics. Our theoretical arguments are supported by extensive numerical calculations.Comment: 7 pages, 3 figure

    Scaling and Intermittency in Animal Behavior

    Get PDF
    Scale-invariant spatial or temporal patterns and L\'evy flight motion have been observed in a large variety of biological systems. It has been argued that animals in general might perform L\'evy flight motion with power law distribution of times between two changes of the direction of motion. Here we study the temporal behaviour of nesting gilts. The time spent by a gilt in a given form of activity has power law probability distribution without finite average. Further analysis reveals intermittent eruption of certain periodic behavioural sequences which are responsible for the scaling behaviour and indicates the existence of a critical state. We show that this behaviour is in close analogy with temporal sequences of velocity found in turbulent flows, where random and regular sequences alternate and form an intermittent sequence.Comment: 10 page

    Metal-insulator transitions in cyclotron resonance of periodic nanostructures due to avoided band crossings

    Full text link
    A recently found metal-insulator transition in a model for cyclotron resonance in a two-dimensional periodic potential is investigated by means of spectral properties of the time evolution operator. The previously found dynamical signatures of the transition are explained in terms of avoided band crossings due to the change of the external electric field. The occurrence of a cross-like transport is predicted and numerically confirmed

    Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems

    Full text link
    A two dimensional self-gravitating Hamiltonian model made by NN fully-coupled classical particles exhibits a transition from a collapsing phase (CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical point of view, the two phases are characterized by two distinct single-particle motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a time τ\tau that increases linearly with NN. Therefore, the finite particle number acts like a white noise source for the system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review

    Sequential Desynchronization in Networks of Spiking Neurons with Partial Reset

    Full text link
    The response of a neuron to synaptic input strongly depends on whether or not it has just emitted a spike. We propose a neuron model that after spike emission exhibits a partial response to residual input charges and study its collective network dynamics analytically. We uncover a novel desynchronization mechanism that causes a sequential desynchronization transition: In globally coupled neurons an increase in the strength of the partial response induces a sequence of bifurcations from states with large clusters of synchronously firing neurons, through states with smaller clusters to completely asynchronous spiking. We briefly discuss key consequences of this mechanism for more general networks of biophysical neurons

    Fractal Conductance Fluctuations of Classical Origin

    Full text link
    In mesoscopic systems conductance fluctuations are a sensitive probe of electron dynamics and chaotic phenomena. We show that the conductance of a purely classical chaotic system with either fully chaotic or mixed phase space generically exhibits fractal conductance fluctuations unrelated to quantum interference. This might explain the unexpected dependence of the fractal dimension of the conductance curves on the (quantum) phase breaking length observed in experiments on semiconductor quantum dots.Comment: 5 pages, 4 figures, to appear in PR

    Statistics of resonances and of delay times in quasiperiodic Schr"odinger equations

    Full text link
    We study the statistical distributions of the resonance widths P(Γ){\cal P} (\Gamma), and of delay times P(τ){\cal P} (\tau) in one dimensional quasi-periodic tight-binding systems with one open channel. Both quantities are found to decay algebraically as Γα\Gamma^{-\alpha}, and τγ\tau^{-\gamma} on small and large scales respectively. The exponents α\alpha, and γ\gamma are related to the fractal dimension D0ED_0^E of the spectrum of the closed system as α=1+D0E\alpha=1+D_0^E and γ=2D0E\gamma=2-D_0^E. Our results are verified for the Harper model at the metal-insulator transition and for Fibonacci lattices.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Magneto-Transport in the Two-Dimensional Lorentz Gas

    Full text link
    We consider the two-dimensional Lorentz gas with Poisson distributed hard disk scatterers and a constant magnetic field perpendicular to the plane of motion. The velocity autocorrelation is computed numerically over the full range of densities and magnetic fields with particular attention to the percolation threshold between hopping transport and pure edge currents. The Ohmic and Hall conductance are compared with mode-coupling theory and a recent generalized kinetic equation valid for low densities and small fields. We argue that the long time tail as t2t^{-2} persists for non-zero magnetic field.Comment: 7 pages, 14 figures. Uses RevTeX and epsfig.sty. Submitted to Physical Review

    What determines the spreading of a wave packet?

    Full text link
    The multifractal dimensions D2^mu and D2^psi of the energy spectrum and eigenfunctions, resp., are shown to determine the asymptotic scaling of the width of a spreading wave packet. For systems where the shape of the wave packet is preserved the k-th moment increases as t^(k*beta) with beta=D2^mu/D2^psi, while in general t^(k*beta) is an optimal lower bound. Furthermore, we show that in d dimensions asymptotically in time the center of any wave packet decreases spatially as a power law with exponent D_2^psi - d and present numerical support for these results.Comment: Physical Review Letters to appear, 4 pages postscript with figure

    Two interacting Hofstadter butterflies

    Full text link
    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on non commutative geometry techniques permits to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction.Comment: revtex, 12 pages, 11 figure
    corecore