98 research outputs found
Indirect dark matter detection for flattened dwarf galaxies
Gamma-ray experiments seeking to detect evidence of dark matter annihilation in dwarf spheroidal galaxies require knowledge of the distribution of dark matter within these systems. We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulas and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulas are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are all prolate or all oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered (typical correction factors for an ellipticity of 0.4 are 0.75 for the oblate case and 1.6 for the prolate case). We demonstrate that spherical estimates of the D-factors are very insensitive to the flattening and introduce uncertainties significantly less than the uncertainties in the D-factors from the other observables for all the dwarf spheroidals (for example, for a typical ellipticity of 0.4). We conclude by investigating the spread in correction factors produced by triaxial figures and provide uncertainties in the J-factors for the dwarf spheroidals using different physically motivated assumptions for their intrinsic shape and axis alignments. We find that the uncertainty in the J-factors due to triaxiality increases with the observed ellipticity and, in general, introduces uncertainties of a factor of 2 in the J-factors. We discuss our results in light of the reported gamma-ray signal from the highly flattened ultrafaint Reticulum II. Tables of the J- and D-factors for the Milky Way dwarf spheroidal galaxies are provided (assuming an oblate or prolate structure) along with a table of the uncertainty on these factors arising from the unknown triaxiality.Science and Technology Facilities CouncilThis is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevD.94.06352
Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs
Dwarf spheroidal (dSph) galaxies are prime targets for present and future
gamma-ray telescopes hunting for indirect signals of particle dark matter. The
interpretation of the data requires careful assessment of their dark matter
content in order to derive robust constraints on candidate relic particles.
Here, we use an optimised spherical Jeans analysis to reconstruct the
`astrophysical factor' for both annihilating and decaying dark matter in 21
known dSphs. Improvements with respect to previous works are: (i) the use of
more flexible luminosity and anisotropy profiles to minimise biases, (ii) the
use of weak priors tailored on extensive sets of contamination-free mock data
to improve the confidence intervals, (iii) systematic cross-checks of binned
and unbinned analyses on mock and real data, and (iv) the use of mock data
including stellar contamination to test the impact on reconstructed signals.
Our analysis provides updated values for the dark matter content of 8
`classical' and 13 `ultrafaint' dSphs, with the quoted uncertainties directly
linked to the sample size; the more flexible parametrisation we use results in
changes compared to previous calculations. This translates into our ranking of
potentially-brightest and most robust targets---viz., Ursa Minor, Draco,
Sculptor---, and of the more promising, but uncertain targets---viz., Ursa
Major 2, Coma---for annihilating dark matter. Our analysis of Segue 1 is
extremely sensitive to whether we include or exclude a few marginal member
stars, making this target one of the most uncertain. Our analysis illustrates
challenges that will need to be addressed when inferring the dark matter
content of new `ultrafaint' satellites that are beginning to be discovered in
southern sky surveys.Comment: 19 pages, 14 figures, submitted to MNRAS. Supplementary material
available on reques
A global analysis of dark matter signals from 27 dwarf spheroidal galaxies using 11 years of Fermi-LAT observations
We search for a dark matter signal in 11 years of Fermi-LAT gamma-ray data from 27 Milky Way dwarf spheroidal galaxies with spectroscopically measured J-factors. Our analysis includes uncertainties in J-factors and background normalisations and compares results from a Bayesian and a frequentist perspective. We revisit the dwarf spheroidal galaxy Reticulum II, confirming that the purported gamma-ray excess seen in Pass 7 data is much weaker in Pass 8, independently of the statistical approach adopted. We introduce for the first time posterior predictive distributions to quantify the probability of a dark matter detection from another dwarf galaxy given a tentative excess. A global analysis including all 27 dwarfs shows no indication for a signal in nine annihilation channels. We present stringent new Bayesian and frequentist upper limits on the dark matter cross section as a function of dark matter mass. The best-fit dark matter parameters associated with the Galactic Centre excess are excluded by at least 95% confidence level/posterior probability in the frequentist/Bayesian framework in all cases. However, from a Bayesian model comparison perspective, dark matter annihilation within the dwarfs is not strongly disfavoured compared to a background-only model. These results constitute the highest exposure analysis on the most complete sample of dwarfs to date. Posterior samples and likelihood maps from this study are publicly available
Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy
The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most
attractive targets for indirect searches of dark matter. In this work, we
reconstruct the dark matter annihilation (J-factor) and decay profiles for the
newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis
of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS), we
find Reticulum II's J-factor to be among the largest of any Milky Way dSph. We
have checked the robustness of this result against several ingredients of the
analysis. Unless it suffers from tidal disruption or significant inflation of
its velocity dispersion from binary stars, Reticulum II may provide a unique
window on dark matter particle properties.Comment: 5 pages, 4 figures. Match the ApJL accepted versio
A robust estimate of the Milky Way mass from rotation curve data
We present a new estimate of the mass of the Milky Way, inferred via a Bayesian approach by making use of tracers of the circular velocity in the disk plane and stars in the stellar halo, as from the publicly available galkin compilation. We use the rotation curve method to determine the dark matter distribution and total mass under different assumptions for the dark matter profile, while the total stellar mass is constrained by surface stellar density and microlensing measurements. We also include uncertainties on the baryonic morphology via Bayesian model averaging, thus converting a potential source of systematic error into a more manageable statistical uncertainty. We evaluate the robustness of our result against various possible systematics, including rotation curve data selection, uncertainty on the Sun's velocity V0, dependence on the dark matter profile assumptions, and choice of priors. We find the Milky Way's dark matter virial mass to be log10M200DM/ Mo\u2d9 = 11.92+0.06-0.05(stat)\ub10.28\ub10.27(syst) (M200DM=8.3+1.2-0.9(stat)
71011 Mo\u2d9). We also apply our framework to Gaia DR2 rotation curve data and find good statistical agreement with the above results
Cosmic-ray antiproton constraints on light dark matter candidates
Some direct detection experiments have recently collected excess events that
could be interpreted as a dark matter (DM) signal, pointing to particles in the
10 GeV mass range. We show that scenarios in which DM can self-annihilate
with significant couplings to quarks are likely excluded by the cosmic-ray (CR)
antiproton data, provided the annihilation is S-wave dominated when DM
decouples in the early universe. These limits apply to most of supersymmetric
candidates, eg in the minimal supersymmetric standard model (MSSM) and in the
next-to-MSSM (NMSSM), and more generally to any thermal DM particle with
hadronizing annihilation final states.Comment: Contribution to the proceedings of TAUP-2011 (Munich, 5-9 IX 2011). 4
page
Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi
Dwarf spheroidal galaxies are known to be excellent targets for the detection
of annihilating dark matter. We present new limits on the annihilation cross
section of Weakly Interacting Massive Particles (WIMPs) based on the joint
analysis of seven Milky Way dwarfs using a frequentist Neyman construction and
Pass 7 data from the Fermi Gamma-ray Space Telescope. We exclude generic WIMP
candidates annihilating into b-bbar with mass less than 40 GeV that reproduce
the observed relic abundance. To within 95% systematic errors on the dark
matter distribution within the dwarfs, the mass lower limit can be as low as 19
GeV or as high as 240 GeV. For annihilation into tau+tau- these limits become
19 GeV, 13 GeV, and 80 GeV respectively.Comment: 5 pages, 2 figures, 2 supplementary figure
Dark Matter Constraints from a Joint Analysis of Dwarf Spheroidal Galaxy Observations with VERITAS
We present constraints on the annihilation cross section of WIMP dark matter
based on the joint statistical analysis of four dwarf galaxies with VERITAS.
These results are derived from an optimized photon weighting statistical
technique that improves on standard imaging atmospheric Cherenkov telescope
(IACT) analyses by utilizing the spectral and spatial properties of individual
photon events. We report on the results of 230 hours of observations of
five dwarf galaxies and the joint statistical analysis of four of the dwarf
galaxies. We find no evidence of gamma-ray emission from any individual dwarf
nor in the joint analysis. The derived upper limit on the dark matter
annihilation cross section from the joint analysis is at 1 TeV for the bottom quark () final state,
at 1 TeV for the tau lepton
() final state and at 1 TeV for the gauge boson () final state.Comment: 14 pages, 9 figures, published in PRD, Ascii tables containing
annihilation cross sections limits are available for download as ancillary
files with readme.txt file description of limit
Phenomenology of Light Sneutrino Dark Matter in cMSSM/mSUGRA with Inverse Seesaw
We study the possibility of a light Dark Matter (DM) within a constrained
Minimal Supersymmetric Standard Model (cMSSM) framework augmented by a SM
singlet-pair sector to account for the non-zero neutrino masses by inverse
seesaw mechanism. Working within a 'hybrid' scenario with the MSSM sector fixed
at high scale and the singlet neutrino sector at low scale, we find that,
contrary to the case of the usual cMSSM where the neutralino DM cannot be very
light, we can have a light sneutrino DM with mass below 100 GeV satisfying all
the current experimental constraints from cosmology, collider as well as
low-energy experiments. We also note that the supersymmetric inverse seesaw
mechanism with sneutrino as the lightest supersymmetric partner can have
enhanced same-sign dilepton final states with large missing transverse energy
(mET) coming from the gluino- and squark-pair as well as the squark-gluino
associated productions and their cascade decay through charginos. We present a
collider study for the same-sign dilepton+jets+mET signal in this scenario and
propose some distinctions with the usual cMSSM. We also comment on the
implications of such a light DM scenario on the invisible decay width of an 125
GeV Higgs boson.Comment: 24 pages, 4 figures, 7 tables; matches published versio
- …
