10 research outputs found

    Investigating the Effect of Winding Structures in Dynamic Wireless Power Transmission in Electric Vehicle Applications

    No full text
    In recent decades, problems such as air pollution and the reduction of fossil fuel resources led to the development of electric vehicles. Wireless power transmission is an efficient and reliable way to charge fixed and mobile electric vehicles. One of the main problems in the dynamic wireless power transmission method is the amount of constant power transmission and its fluctuations. The purpose of this paper is to compare six different types of winding structures for choosing the best type of winding for the transmitter side in the application of dynamic charging of electric vehicles. In this paper, the winding function method is used for more accurate modeling of coils in terms of spatial harmonics and calculation of their self and mutual inductances by changing the location of the vehicle. Also, for coil excitation, instead of using the common single-phase inverter, a three-phase type is used to reduce the power ripple. The comparison is made in the aspect of the transmission power amount and its ripple. Modeling and simulation results are presented to confirm the actual results

    Effect of Al-5Ti-B Inoculant Addition on the Graded Microstructure of Centrifugally Cast Al-13.8 wt.% Mg2Si Composite

    No full text
    To evaluate the effect of inoculant addition on functionally graded microstructure of centrifugally cast Al-Mg2Si composites, two cylinders of Al-13.8 wt.% Mg2Si with and without the addition of 1 wt.% Al-5Ti-B inoculant were cast in a vertical centrifugal casting machine. The chemical composition, microstructures and microstructural phases of the different radial sections of the cast cylinders were studied using induction coupled plasma (ICP) method, optical/scanning electron microscopes, and X-ray diffractometry, respectively. The results showed that in the inoculant content cylinder, owing to the prevailing thermal regime as well as the specific mode of eutectic solidification in this composite, the titanium and boron compounds were segregated towards the middle layer of the cylinder and caused the formation of primary Mg2Si particles and non-eutectic Al () in this layer. In addition, due to the effect of centrifugal force during solidification, a higher volume fraction of the light primary Mg2Si particles, according to Stocks law, was segregated towards the inner layer of the cast cylinders

    Application of TPM indicators for analyzing work time of machines used in the pressure die casting

    Get PDF
    The article presents the application of total productive maintenance (TPM) to analyze the working time indicators of casting machines with particular emphasis on failures and unplanned downtime to reduce the proportion of emergency operation for preventive maintenance and diagnostics. The article presents that the influence of individual factors of complex machinery maintenance (TPM) is different and depends on the machines' modernity level. In an original way, by using correlation graphs, research findings on the impact of individual TPM factors on the castings quality were presented and interpreted. The examination results conducted for machines with varying modernity degrees allowed to determine changes within the impact of individual TPM factors depending on machine parameters. These results provide a rich source of information for the improvement processes on casting quality of the foundry industry that satisfies the automotive industry demand

    Multi-criteria decision making approaches for green supply chains: a review

    No full text

    A review of closed-loop supply chain models

    No full text
    corecore