2,881 research outputs found

    Supersymmetry on Jacobstahl lattices

    Full text link
    It is shown that the construction of Yang and Fendley (2004 {\it J. Phys. A: Math.Gen. {\bf 37}} 8937) to obtainsupersymmetric systems, leads not to the open XXZ chain with anisotropy Δ=1/2\Delta =-{1/2} but to systems having dimensions given by Jacobstahl sequences.For each system the ground state is unique. The continuum limit of the spectra of the Jacobstahl systems coincide, up to degeneracies, with that of the Uq(sl(2))U_q(sl(2)) invariant XXZ chain for q=exp(iπ/3)q=\exp(i\pi/3). The relation between the Jacobstahl systems and the open XXZ chain is explained.Comment: 6 pages, 0 figure

    Is there a Relationship between the Elongational Viscosity and the First Normal Stress Difference in Polymer Solutions?

    Full text link
    We investigate a variety of different polymer solutions in shear and elongational flow. The shear flow is created in the cone-plate-geometry of a commercial rheometer. We use capillary thinning of a filament that is formed by a polymer solution in the Capillary Breakup Extensional Rheometer (CaBER) as an elongational flow. We compare the relaxation time and the elongational viscosity measured in the CaBER with the first normal stress difference and the relaxation time that we measured in our rheometer. All of these four quantities depend on different fluid parameters - the viscosity of the polymer solution, the polymer concentration within the solution, and the molecular weight of the polymers - and on the shear rate (in the shear flow measurements). Nevertheless, we find that the first normal stress coefficient depends quadratically on the CaBER relaxation time. A simple model is presented that explains this relation

    Bethe Ansatz solution of a decagonal rectangle triangle random tiling

    Full text link
    A random tiling of rectangles and triangles displaying a decagonal phase is solved by Bethe Ansatz. Analogously to the solutions of the dodecagonal square triangle and the octagonal rectangle triangle tiling an exact expression for the maximum of the entropy is found.Comment: 17 pages, 4 figures, some remarks added and typos correcte

    Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon

    Full text link
    The raise and peel model of a one-dimensional fluctuating interface (model A) is extended by considering one source (model B) or two sources (model C) at the boundaries. The Hamiltonians describing the three processes have, in the thermodynamic limit, spectra given by conformal field theory. The probability of the different configurations in the stationary states of the three models are not only related but have interesting combinatorial properties. We show that by extending Pascal's triangle (which gives solutions to linear relations in terms of integer numbers), to an hexagon, one obtains integer solutions of bilinear relations. These solutions give not only the weights of the various configurations in the three models but also give an insight to the connections between the probability distributions in the stationary states of the three models. Interestingly enough, Pascal's hexagon also gives solutions to a Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few references are adde

    A refined Razumov-Stroganov conjecture II

    Full text link
    We extend a previous conjecture [cond-mat/0407477] relating the Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to refined numbers of alternating sign matrices. By considering the O(1) loop model on a semi-infinite cylinder with dislocations, we obtain the generating function for alternating sign matrices with prescribed positions of 1's on their top and bottom rows. This seems to indicate a deep correspondence between observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf macro

    Optimizing evacuation flow in a two-channel exclusion process

    Full text link
    We use a basic setup of two coupled exclusion processes to model a stylised situation in evacuation dynamics, in which evacuees have to choose between two escape routes. The coupling between the two processes occurs through one common point at which particles are injected, the process can be controlled by directing incoming individuals into either of the two escape routes. Based on a mean-field approach we determine the phase behaviour of the model, and analytically compute optimal control strategies, maximising the total current through the system. Results are confirmed by numerical simulations. We also show that dynamic intervention, exploiting fluctuations about the mean-field stationary state, can lead to a further increase in total current.Comment: 16 pages, 6 figure

    Exact Ground State and Finite Size Scaling in a Supersymmetric Lattice Model

    Full text link
    We study a model of strongly correlated fermions in one dimension with extended N=2 supersymmetry. The model is related to the spin S=1/2S=1/2 XXZ Heisenberg chain at anisotropy Δ=1/2\Delta=-1/2 with a real magnetic field on the boundary. We exploit the combinatorial properties of the ground state to determine its exact wave function on finite lattices with up to 30 sites. We compute several correlation functions of the fermionic and spin fields. We discuss the continuum limit by constructing lattice observables with well defined finite size scaling behavior. For the fermionic model with periodic boundary conditions we give the emptiness formation probability in closed form.Comment: 4 pages, 4 eps figure

    Refined Razumov-Stroganov conjectures for open boundaries

    Full text link
    Recently it has been conjectured that the ground-state of a Markovian Hamiltonian, with one boundary operator, acting in a link pattern space is related to vertically and horizontally symmetric alternating-sign matrices (equivalently fully-packed loop configurations (FPL) on a grid with special boundaries).We extend this conjecture by introducing an arbitrary boundary parameter. We show that the parameter dependent ground state is related to refined vertically symmetric alternating-sign matrices i.e. with prescribed configurations (respectively, prescribed FPL configurations) in the next to central row. We also conjecture a relation between the ground-state of a Markovian Hamiltonian with two boundary operators and arbitrary coefficients and some doubly refined (dependence on two parameters) FPL configurations. Our conjectures might be useful in the study of ground-states of the O(1) and XXZ models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure

    Construction of a Coordinate Bethe Ansatz for the asymmetric simple exclusion process with open boundaries

    Full text link
    The asymmetric simple exclusion process with open boundaries, which is a very simple model of out-of-equilibrium statistical physics, is known to be integrable. In particular, its spectrum can be described in terms of Bethe roots. The large deviation function of the current can be obtained as well by diagonalizing a modified transition matrix, that is still integrable: the spectrum of this new matrix can be also described in terms of Bethe roots for special values of the parameters. However, due to the algebraic framework used to write the Bethe equations in the previous works, the nature of the excitations and the full structure of the eigenvectors were still unknown. This paper explains why the eigenvectors of the modified transition matrix are physically relevant, gives an explicit expression for the eigenvectors and applies it to the study of atypical currents. It also shows how the coordinate Bethe Ansatz developped for the excitations leads to a simple derivation of the Bethe equations and of the validity conditions of this Ansatz. All the results obtained by de Gier and Essler are recovered and the approach gives a physical interpretation of the exceptional points The overlap of this approach with other tools such as the matrix Ansatz is also discussed. The method that is presented here may be not specific to the asymmetric exclusion process and may be applied to other models with open boundaries to find similar exceptional points.Comment: references added, one new subsection and corrected typo
    corecore