2,371 research outputs found

    Pullulations d'acridiens en France

    Get PDF

    A photometric study of the hot exoplanet WASP-19b

    Full text link
    Context: When the planet transits its host star, it is possible to measure the planetary radius and (with radial velocity data) the planet mass. For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn, IC, z'-Gunn and I+z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We have also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 micron. We have performed a global MCMC analysis of all new data together with some archive data in order to refine the planetary parameters and measure the occultation depths in z'-band and at 1.19 micron. Results: We measure a planetary radius of R_p = 1.376 (+/-0.046) R_j, a planetary mass of M_p = 1.165 (+/-0.068) M_j, and find a very low eccentricity of e = 0.0077 (+/-0.0068), compatible with a circular orbit. We have detected the z'-band occultation at 3 sigma significance and measure it to be dF_z'= 352 (+/-116) ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 micron is only marginally constrained at dF_1190 = 1711 (+/-745) ppm. Conclusions: We have shown that the detection of occultations in the visible is within reach even for 1m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion.Comment: Published in Astronomy & Astrophysics. 11 pages, 11 figures, 4 table

    Spin density distribution in a partially magnetized organic quantum magnet

    Get PDF
    Polarized neutron diffraction experiments on an organic magnetic material reveal a highly skewed distribution of spin density within the magnetic molecular unit. The very large magnitude of the observed effect is due to quantum spin fluctuations. The data are in quantitative agreement with direct diagonalization results for a model spin Hamiltonian, and provide insight on the actual microscopic origin of the relevant exchange interactions.Comment: 5 pages 4 figure

    An educated search for transiting habitable planets: (Research Note) Targetting M dwarfs with known transiting planets

    Get PDF
    Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal the transits of one or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth. For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case. GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect any transiting habitable planet down to the size of Mars. The mass measurement of such a small planet would be out of reach for current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object. Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet

    WASP-50b: a hot Jupiter transiting a moderately active solar-type star

    Get PDF
    We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295+-0.0009 AU) around a moderately bright (V=11.6, K=10) G9 dwarf (0.89+-0.08 M_sun, 0.84+-0.03 R_sun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50b, are well constrained to 1.47+-0.09 M_jup and 1.15+-0.05 R_jup, respectively. The transit ephemeris is 2455558.6120 (+-0.0002) + N x 1.955096 (+-0.000005) HJD_UTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'_HK = -4.67) and rotational period (P_rot = 16.3+-0.5 days) of the host star suggest an age of 0.8+-0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (rho_star = 1.48+-0.10 rho_sun, Teff = 5400+-100 K, [Fe/H]= -0.12+-0.08) which favours an age of 7+-3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity (Pont 2009; Hartman 2010). We measure a stellar inclination of 84 (-31,+6) deg, disfavouring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars proposed by Knutson et al. (2010).Comment: 9 pages, 8 figures. Accepted for publication in Astronomy & Astrophysic

    The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns

    Get PDF
    We report measurements of the thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns with the Spitzer Infrared Array Camera (IRAC). Our measured occultation depths are 0.510 +- 0.042 % and 0.41 +- 0.11 % at 4.5 and 8 microns, respectively. In addition to the CoRoT optical measurements, these planet/star flux ratios indicate a poor heat distribution to the night side of the planet and are in better agreement with an atmosphere free of temperature inversion layer. Still, the presence of such an inversion is not definitely ruled out by the observations and a larger wavelength coverage is required to remove the current ambiguity. Our global analysis of CoRoT, Spitzer and ground-based data confirms the large mass and size of the planet with slightly revised values (Mp = 3.47 +- 0.22 Mjup, Rp = 1.466 +- 0.044 Rjup). We find a small but significant offset in the timing of the occultation when compared to a purely circular orbital solution, leading to e cos(omega) = -0.00291 +- 0.00063 where e is the orbital eccentricity and omega is the argument of periastron. Constraining the age of the system to be at most of a few hundreds of Myr and assuming that the non-zero orbital eccentricity is not due to a third undetected body, we model the coupled orbital-tidal evolution of the system with various tidal Q values, core sizes and initial orbital parameters. For log(Q_s') = 5 - 6, our modelling is able to explain the large radius of CoRoT-2b if log(Q_p') <= 5.5 through a transient tidal circularization and corresponding planet tidal heating event. Under this model, the planet will reach its Roche limit within 20 Myr at most.Comment: 13 pages, 2 tables, 11 figures. Accepted for publication in Astronomy and Astrophysic

    Influence du pastoralisme sur les populations acridiennes dans le massif du Siroua (Maroc)

    Get PDF
    Un foyer de grégarisation de #Dociostaurus maroccanus (Thunb.) a été étudié au cours de cinq missions annuelles (1988-1993). Le site d'étude est un pâturage d'altitude dans l'Anti-Atlas (2300 m) où les troupeaux estivent. Sur les 2850 ha de pâturages à #Poa bulbosa le nombre de moutons et de chèvres a été estimé à 7200 têtes (une tête pour 0,4 ha). Les acridiens (18 espèces) et leurs prédateurs (14 espèces d'insectes et oiseaux) sont cantonnés autour d'une prairie de fauche et des cultures irriguées (55 ha). Le site de ponte du criquet marocain est sur un parc à moutons de 2 hectares. La densité moyenne d'oothèques est de 77/m2, dont 37 % sont détruites par des larves de coléoptères (méloïdes) et des larves de diptères. #Falco naumanni Fleicher et #Pyrrhocorax pyrrhocorax docilis Gm. sont les prédateurs de criquets, importants sur le site. Les craves à bec rouge ont été observés déterrant les oothèques pour les manger. Il est connu que les moutons créent les conditions favorables à la grégarisation du criquet marocain. Nous montrons que le strict calendrier des activités pastorales influence aussi la dynamique des populations acridiennes : les éclosions ont lieu en mai dans un milieu non perturbé par les moutons et à l'abri des prédateurs jusqu'à la fenaison. La transhumance le 28 juillet, en pleine saison de ponte, modifie l'espace et les ressources trophiques disponibles. (Résumé d'auteur

    Limits to the planet candidate GJ 436c

    Full text link
    We report on H-band, ground-based observations of a transit of the hot Neptune GJ 436b. Once combined to achieve sampling equivalent to archived observations taken with Spitzer, our measurements reach comparable precision levels. We analyze both sets of observations in a consistent way, and measure the rate of orbital inclination change to be of 0.02+/-0.04 degrees in the time span between the two observations (253.8 d, corresponding to 0.03+/-0.05 degrees/yr if extrapolated). This rate allows us to put limits on the relative inclination between the two planets by performing simulations of planetary systems, including a second planet, GJ 436c, whose presence has been recently suggested (Ribas et al. 2008). The allowed inclinations for a 5 M_E super-Earth GJ 436c in a 5.2 d orbit are within ~7 degrees of the one of GJ 436b; for larger differences the observed inclination change can be reproduced only during short sections (<50%) of the orbital evolution of the system. The measured times of three transit centers of the system do not show any departure from linear ephemeris, a result that is only reproduced in <1% of the simulated orbits. Put together, these results argue against the proposed planet candidate GJ 436c.Comment: Replaced with accepted version. Minor language corrections. 4 pages, 4 figures, to appear in A&A Letter
    corecore