586 research outputs found
Impact of alpha-tocopherol deficiency and supplementation on sacrocaudalis and gluteal muscle fiber histopathology and morphology in horses.
BackgroundA subset of horses deficient in alpha-tocopherol (α-TP) develop muscle atrophy and vitamin E-responsive myopathy (VEM) characterized by mitochondrial alterations in the sacrocaudalis dorsalis medialis muscle (SC).ObjectivesTo quantify muscle histopathologic abnormalities in subclinical α-TP deficient horses before and after α-TP supplementation and compare with retrospective (r)VEM cases.AnimalsProspective study; 16 healthy α-TP-deficient Quarter Horses. Retrospective study; 10 retrospective vitamin E-responsive myopathy (rVEM) cases .MethodsBlood, SC, and gluteus medius (GM) biopsy specimens were obtained before (day 0) and 56 days after 5000 IU/450 kg horse/day PO water dispersible liquid α-TP (n = 8) or control (n = 8). Muscle fiber morphology and mitochondrial alterations were compared in samples from days 0 and 56 and in rVEM cases.ResultsMitochondrial alterations more common than our reference range (<2.5% affected fibers) were present in 3/8 control and 4/8 treatment horses on day 0 in SC but not in GM (mean, 2.2; range, 0%-10% of fibers). Supplementation with α-TP for 56 days did not change the percentage of fibers with mitochondrial alterations or anguloid atrophy, or fiber size in GM or SC. Clinical rVEM horses had significantly more mitochondrial alterations (rVEM SC, 13% ± 7%; GM, 3% ± 2%) and anguloid atrophy compared to subclinical day 0 horses.Conclusions and clinical importanceClinically normal α-TP-deficient horses can have mitochondrial alterations in the SC that are less severe than in atrophied VEM cases and do not resolve after 56 days of α-TP supplementation. Preventing α-TP deficiency may be of long-term importance for mitochondrial viability
Common variation in ISL1 confers genetic susceptibility for human congenital heart disease
Congenital heart disease (CHD) is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1) is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant-common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations
The Experiences and Perceptions of Practicing Special Education Teachers During the COVID-19 Pandemic
This study examined special education teachers’ perceptions and experiences as they transitioned to distance learning during the COVID-19 pandemic. Although there has been much research on preparing teachers to be effective in online environments, there is limited research on the teaching and learning dynamics when teachers are thrust into distance learning without training and preparation (Kormos, 2018; Moore-Adams et al. 2016; Unruh et al. 2016; Vasquez & Serianni, 2012). As described by Steele (1973), environments are affected by six functions: security and shelter, social contact, symbolic identification, task instrumentality, pleasure, and growth. In a classroom setting, these functions work together to promote a learning environment conducive to transformative experiences. Participants in the study, five special education teachers, wrote three to five journal entries over a six-week period, with a focus on sharing their experiences. These journals were collected and analyzed via a phenomenological method. Textural and structural themes were uncovered, and as was the essence of the teachers’ experiences. Findings demonstrated specific factors that promoted resiliency in teaching during a pandemic – special education teachers sought connections and relationships, they established routines, and looked to administration, peers and families for guidance and support
Ulk4 regulates GABAergic signaling and anxiety-related behavior
Excitation/inhibition imbalance has been proposed as a fundamental mechanism in the pathogenesis of neuropsychiatric and neurodevelopmental disorders, in which copy number variations of the Unc-51 like kinase 4 (ULK4) gene encoding a putative Serine/Threonine kinase have been reported in approximately 1/1000 of patients suffering pleiotropic clinical conditions of schizophrenia, depression, autistic spectrum disorder (ASD), developmental delay, language delay, intellectual disability, or behavioral disorder. The current study characterized behavior of heterozygous Ulk4(+/tm1a) mice, demonstrating that Ulk4(+/tm1a) mice displayed no schizophrenia-like behavior in acoustic startle reactivity and prepulse inhibition tests or depressive-like behavior in the Porsolt swim or tail suspension tests. However, Ulk4(+/tm1a) mice exhibited an anxiety-like behavioral phenotype in several tests. Previously identified hypo-anxious (Atp1a2, Ptn, and Mdk) and hyper-anxious (Gria1, Syngap1, and Npy2r) genes were found to be dysregulated accordingly in Ulk4 mutants. Ulk4 was found to be expressed in GABAergic neurons and the Gad67⁺ interneurons were significantly reduced in the hippocampus and basolateral amygdala of Ulk4(+/tm1a) mice. Transcriptome analyses revealed a marked reduction of GABAergic neuronal subtypes, including Pvalb, Sst, Cck, Npy, and Nos3, as well as significant upregulation of GABA receptors, including Gabra1, Gabra3, Gabra4, Gabra5, and Gabrb3. This is the first evidence that Ulk4 plays a major role in regulating GABAergic signaling and anxiety-like behavior, which may have implications for the development of novel anxiolytic treatments
Recommended from our members
Full field electroretinogram in autism spectrum disorder
Purpose
To explore early findings that individuals with autism spectrum disorder (ASD) have reduced scotopic ERG b-wave amplitudes.
Methods
Dark adapted (DA) ERGs were acquired to a range of flash strengths, (-4.0 to 2.3 log phot cd.s.m-2), including and extending the ISCEV standard, from two subject groups: (ASD) N=11 and (Control) N=15 for DA and N=14 for light adapted (LA) ERGs who were matched for mean age and range. Naka-Rushton curves were fitted to DA b-wave amplitude growth over the first limb (-4.0 to -1.0 log phot cd.s.m-2). The derived parameters (Vmax, Km and n) were compared between groups. Scotopic 15 Hz flicker ERGs (14.93Hz) were recorded to 10 flash strengths presented in ascending order from -3.0 to 0.5 log Td.s to assess the slow and fast rod pathways respectively. LA ERGs were acquired to a range of flash strengths, (-0.5 to 1.0 log phot cd.s.m-2). Photopic 30 Hz, flicker ERGs, oscillatory potentials (OPs) and the responses to prolonged 120 ms ON- OFF stimuli were also recorded.
Results
For some individuals the DA b-wave amplitudes fell below the control 5th centile of the controls with up to four ASD participants (36%) at the 1.5 log phot cd.s.m-2 flash strength and two (18%) ASD participants at the lower -2 log phot cd.s.m-2 flash strength. However, across the thirteen flash strengths there were no significant group differences for b-wave amplitude’s growth (repeated measures ANOVA p=0.83). Nor were there any significant differences between the groups for the Naka-Rushton parameters (p>0.09). No group differences were observed in the 15Hz scotopic flicker phase or amplitude (p>0.1), DA ERG a- wave amplitude or time to peak (p>26). The DA b-wave time to peak at 0.5 log phot cd.s.m-2 were longer in the ASD group (corrected p=0.04). The single ISCEV LA 0.5 log phot cd.s.m-2 (p0.08) to the single flash stimuli although there was a significant interaction between group and flash strength for the b-wave amplitude (corrected p=0.006). The prolonged 120 ms ON-responses were smaller in the ASD group (corrected p=0.003), but the OFF response amplitude (p>0.6) and ON and OFF times to peaks (p>0.4) were similar between groups. The LA OPs showed an earlier bifurcation of OP2 in the younger ASD participants, however no other differences were apparent in the OPs or 30Hz flicker waveforms.
Conclusion
Some ASD individuals show subnormal DA ERG b-wave amplitudes. Under LA conditions the b-wave is reduced across the ASD group along with the ON response of the ERG. These exploratory findings, suggest there is altered cone-ON bipolar signalling in ASD
Recommended from our members
Individual common variants exert weak effects on the risk for autism spectrum disorders.
While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest
Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder
Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD
De novo mutations in histone modifying genes in congenital heart disease
Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births1. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. By analysis of exome sequencing of parent-offspring trios, we compared the incidence of de novo mutations in 362 severe CHD cases and 264 controls. CHD cases showed a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging mutations. Similar odds ratios were seen across major classes of severe CHD. We found a marked excess of de novo mutations in genes involved in production, removal or reading of H3K4 methylation (H3K4me), or ubiquitination of H2BK120, which is required for H3K4 methylation2–4. There were also two de novo mutations in SMAD2; SMAD2 signaling in the embryonic left-right organizer induces demethylation of H3K27me5. H3K4me and H3K27me mark `poised' promoters and enhancers that regulate expression of key developmental genes6. These findings implicate de novo point mutations in several hundred genes that collectively contribute to ~10% of severe CHD
- …
