466 research outputs found
Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction
Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA
Recommended from our members
Charting a dynamic DNA methylation landscape of the human genome
DNA methylation is a defining feature of mammalian cellular identity and essential for normal development1,2. Most cell types, except germ cells and pre-implantation embryos3–5, display relatively stable DNA methylation patterns with 70–80% of all CpGs being methylated6. Despite recent advances we still have a too limited understanding of when, where and how many CpGs participate in genomic regulation. Here we report the in depth analysis of 42 whole genome bisulfite sequencing (WGBS) data sets across 30 diverse human cell and tissue types. We observe dynamic regulation for only 21.8% of autosomal CpGs within a normal developmental context, a majority of which are distal to transcription start sites. These dynamic CpGs co-localize with gene regulatory elements, particularly enhancers and transcription factor binding sites (TFBS), which allow identification of key lineage specific regulators. In addition, differentially methylated regions (DMRs) often harbor SNPs associated with cell type related diseases as determined by GWAS. The results also highlight the general inefficiency of WGBS as 70–80% of the sequencing reads across these data sets provided little or no relevant information regarding CpG methylation. To further demonstrate the utility of our DMR set, we use it to classify unknown samples and identify representative signature regions that recapitulate major DNA methylation dynamics. In summary, although in theory every CpG can change its methylation state, our results suggest that only a fraction does so as part of coordinated regulatory programs. Therefore our selected DMRs can serve as a starting point to help guide novel, more effective reduced representation approaches to capture the most informative fraction of CpGs as well as further pinpoint putative regulatory elements
Recommended from our members
Comprehensive comparative analysis of RNA sequencing methods for degraded or low input samples
RNA-Seq is an effective method to study the transcriptome, but can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations, or cadavers. Recent studies have proposed several methods for RNA-Seq of low quality and/or low quantity samples, but their relative merits have not been systematically analyzed. Here, we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery, and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and two control libraries. We find that the RNase H method performed best for low quality RNA, and confirmed this with actual degraded samples. RNase H can even effectively replace oligo (dT) based methods for standard RNA-Seq. SMART and NuGEN had distinct strengths for low quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development
Simultaneous generation of many RNA-seq libraries in a single reaction
Although RNA-seq is a powerful tool, the considerable time and cost associated with library construction has limited its utilization for various applications. RNAtag-Seq, an approach to generate multiple RNA-seq libraries in a single reaction, lowers time and cost per sample, and it produces data on prokaryotic and eukaryotic samples that are comparable to those generated by traditional strand-specific RNA-seq approaches
Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression
Construction and validation of yeast artificial chromosome contig maps by RecA-assisted restriction endonuclease cleavage
Comparative analysis of RNA sequencing methods for degraded or low-input samples
available in PMC 2014 January 01RNA-seq is an effective method for studying the transcriptome, but it can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations or cadavers. Recent studies have proposed several methods for RNA-seq of low-quality and/or low-quantity samples, but the relative merits of these methods have not been systematically analyzed. Here we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and compared them against two control libraries. We found that the RNase H method performed best for chemically fragmented, low-quality RNA, and we confirmed this through analysis of actual degraded samples. RNase H can even effectively replace oligo(dT)-based methods for standard RNA-seq. SMART and NuGEN had distinct strengths for measuring low-quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.National Institutes of Health (U.S.) (Pioneer Award DP1-OD003958-01)National Human Genome Research Institute (U.S.) (NHGRI) 1P01HG005062-01)National Human Genome Research Institute (U.S.) (NHGRI Center of Excellence in Genome Science Award 1P50HG006193-01)Howard Hughes Medical Institute (Investigator)Merkin Family Foundation for Stem Cell ResearchBroad Institute of MIT and Harvard (Klarman Cell Observatory)National Human Genome Research Institute (U.S.) (NHGRI grant HG03067)Fonds voor Wetenschappelijk Onderzoek--Vlaandere
Comprehensive comparative analysis of strand-specific RNA sequencing methods
Strand-specific, massively parallel cDNA sequencing (RNA-seq) is a powerful tool for transcript discovery, genome annotation and expression profiling. There are multiple published methods for strand-specific RNA-seq, but no consensus exists as to how to choose between them. Here we developed a comprehensive computational pipeline to compare library quality metrics from any RNA-seq method. Using the well-annotated Saccharomyces cerevisiae transcriptome as a benchmark, we compared seven library-construction protocols, including both published and our own methods. We found marked differences in strand specificity, library complexity, evenness and continuity of coverage, agreement with known annotations and accuracy for expression profiling. Weighing each method's performance and ease, we identified the dUTP second-strand marking and the Illumina RNA ligation methods as the leading protocols, with the former benefitting from the current availability of paired-end sequencing. Our analysis provides a comprehensive benchmark, and our computational pipeline is applicable for assessment of future protocols in other organisms.Howard Hughes Medical InstituteUnited States-Israel Binational Science Foundatio
Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution
August 1, 2010Bisulfite sequencing measures absolute levels of DNA methylation at single-nucleotide resolution,
providing a robust platform for molecular diagnostics. Here, we optimize bisulfite sequencing for
genome-scale analysis of clinical samples. Specifically, we outline how restriction digestion
targets bisulfite sequencing to hotspots of epigenetic regulation; we show that 30ng of DNA are
sufficient for genome-scale analysis; we demonstrate that our protocol works well on formalinfixed,
paraffin-embedded (FFPE) samples; and we describe a statistical method for assessing
significance of altered DNA methylation patterns.National Institutes of Health (U.S.) (Grant R01HG004401)National Institutes of Health (U.S.) (Grant U54HG03067)National Institutes of Health (U.S.) (Grant U01ES017155
- …
