373 research outputs found

    Experimental Verification of the Temperature and Strain Dependence of the Critical Properties in Nb3Sn Wires

    Get PDF
    The critical current density in Nb3Sn conductors is described with an improved scaling formula for the temperature, magnetic field and strain dependence. In an earlier study, it is concluded that the largest uncertainties in this description arise from the temperature dependence that is described with various slightly different empirical relations. For the optimization of the numerical codes, used to predict the stability of large magnet systems, a more accurate description is required. Therefore, two different bronze processed conductors for the ITER CS model coil are analyzed in detail. The critical current is measured at temperatures from 4.2 K up to the critical temperature, in magnetic fields from 1 T to 13 T and with an applied axial strain from -0.6% to +0.4%. The axial strain is applied by a U-shaped bending spring and a comparison is made between brass and Ti-6Al-4V, as substrate materia

    An optimized BSCCO/Ag resonator coil for utility use

    Get PDF
    AC coils made with BSCCO-2223/Ag tapes and operating in liquid nitrogen have a potential for power related applications, e.g., inductors, transformers and current limiters. High-Tc tapes are available from several producers, while access to the coil building know-help is still rather limited, The relevant knowledge and technology suitable for making HTS coils for 50-60 Hz operation is being developed as a part of the current project. To verify the technology, several test solenoids and a first full-scale sub-coil have been manufactured. Electromagnetic, thermal and mechanical analysis of the coils is performed. The electromagnetic analysis focuses on the reduction of the radial magnetic field component in the windings. Voltage-current characteristics and the AC loss data obtained from relevant short sample measurements are applied. A good agreement between calculated and measured V-I curves and losses of the coils is found. A remarkable increase of the critical current and the reduction of the AC loss at the coil edges are predicted and confirmed experimentally. With the losses defined, thermal analysis and optimization of the coil structure are performed numerically followed by measurements for verification. The paper reports on the series of coils developed and explains the features of the projec

    The structural design for a "canted cosine-theta" Superconducting dipole coil and magnet structure-CCT

    Get PDF
    The Superconducting Magnet Group, at Lawrence Berkeley National Laboratory (LBNL), has been developing a canted cosine-theta (CCT) superconducting dipole coil as well as the coil's supporting magnet structure. This contribution reports on the progress in the development of the coil's winding mandrel and its fabrication options. A comprehensive study of the coil's Lorentz forces was performed to validate the winding mandrel's "stress interception" attributes. The design of the external structure and the application of the "Bladder & Key" technology is also discussed. Additionally, the application of these studies to a curved ion-therapy CCT dipole magnet is reported

    Thin film growth by pulsed laser deposition and properties of 122-type iron-based superconductor AE(Fe1--xCox)2As2 (AE = alkaline earth)

    Full text link
    This paper reports comprehensive results on thin-film growth of 122-type iron-pnictide superconductors, AE(Fe1-xCox)2As2 (AE = Ca, Sr, and Ba, AEFe2As2:Co) by a pulsed laser deposition method using a neodymium-doped yttrium aluminum garnet laser as an excitation source. The most critical parameter to produce the SrFe2As2:Co and BaFe2As2:Co phases is the substrate temperature (Ts). It is difficult to produce highly-pure CaFe2As2:Co phase thin film at any Ts. For BaFe2As2:Co epitaxial films, controlling Ts at 800-850 {\deg}C and growth rate to 2.8-3.3 {\AA}/s produced high-quality films with good crystallinity, flat surfaces, and high critical current densities > 1 MA/cm2, which were obtained for film thicknesses from 100 to 500 nm. The doping concentration x was optimized for Ba(Fe1-xCox)2As2 epitaxial films, leading to the highest critical temperature of 25.5 K in the epitaxial films with the nominal x = 0.075.Comment: will be published in the special issue of Superconductor Science and Technology, `Iron12

    Performance correlation between YBa2Cu3O7-δ coils and short samples for coil technology development

    Get PDF
    A robust fabrication technology is critical to achieve the high performance in YBa Cu O (YBCO) coils as the critical current of the brittle YBCO layer is subject to the strain-induced degradation during coil fabrication. The expected current-carrying capability of the magnet and its temperature dependence are two key inputs to the coil technology development. However, the expected magnet performance is not straightforward to determine because the short-sample critical current depends on both the amplitude and orientation of the applied magnetic field with respect to the broad surface of the tape-form conductor. In this paper, we present an approach to calculate the self-field performance limit for YBCO racetrack coils at 77 and 4.2 K. Critical current of short YBCO samples was measured as a function of the applied field perpendicular to the conductor surface from 0 to 15 T. This field direction limited the conductor critical current. Two double-layer racetrack coils, one with three turns and the other with 10 turns, were wound and tested at 77 and 4.2 K. The test coils reached at least 80% of the expected critical current. The ratio between the coil critical currents at 77 and 4.2 K agreed well with the calculation. We conclude that the presented approach can determine the performance limit in YBCO racetrack coils based on the short-sample critical current and provide a useful guideline for assessing the coil performance and fabrication technology. The correlation of the coil critical current between 77 K and 4.2 K was also observed, allowing the 77 K test to be a cost-effective tool for the development of coil technology. 2

    Characterization of insulating coatings for wind-and-react coil fabrication

    Get PDF
    Electrical insulation breakdown between conductor and coil parts and structures is a limiting factor in the performance of high-field magnets. We have evaluated various insulation coatings for possible application in both Nb Sn and Bi-2212 coil fabrication. Such coatings must be robust to maintain structural integrity and provide adequate voltage standoff after the wind-and-react coil fabrication process. Such processes are characterized by reaction temperatures of 650°C in an inert atmosphere for Nb Sn and 890°C in a pure oxygen atmosphere for Bi-2212, and down to cryogenic temperatures when coils are in service. We present a method of testing standardized samples and report the performance characteristics of oxide layers produced (or applied) by plasma-spray, surface conversion, and "paintable" coatings in common areas of voltage breakdown in coil parts. We also address material compatibility and durability during high-temperature heat treatment and cryogenic shock. Suitable coatings selected in the testing process will be instrumental in improving the performance of future wind-and-react coils. © 2014 AIP Publishing LLC. 3

    The upper critical field of filamentary Nb3Sn conductors

    Get PDF
    We have examined the upper critical field of a large and representative set of present multi-filamentary Nb3Sn wires and one bulk sample over a temperature range from 1.4 K up to the zero field critical temperature. Since all present wires use a solid-state diffusion reaction to form the A15 layers, inhomogeneities with respect to Sn content are inevitable, in contrast to some previously studied homogeneous samples. Our study emphasizes the effects that these inevitable inhomogeneities have on the field-temperature phase boundary. The property inhomogeneities are extracted from field-dependent resistive transitions which we find broaden with increasing inhomogeneity. The upper 90-99 % of the transitions clearly separates alloyed and binary wires but a pure, Cu-free binary bulk sample also exhibits a zero temperature critical field that is comparable to the ternary wires. The highest mu0Hc2 detected in the ternary wires are remarkably constant: The highest zero temperature upper critical fields and zero field critical temperatures fall within 29.5 +/- 0.3 T and 17.8 +/- 0.3 K respectively, independent of the wire layout. The complete field-temperature phase boundary can be described very well with the relatively simple Maki-DeGennes model using a two parameter fit, independent of composition, strain state, sample layout or applied critical state criterion.Comment: Accepted Journal of Applied Physics Few changes to shorten document, replaced eq. 7-

    Specific serology for emerging human coronaviruses by protein microarray

    Get PDF
    We present a serological assay for the specific detection of IgM and IgG antibodies against the emerging human coronavirus hCoV-EMC and the SARS-CoV based on protein microarray technology. The assay uses the S1 receptor-binding subunit of the spike protein of hCoV-EMC and SARS-CoV as antigens. The assay has been validated extensively using putative cross-reacting sera of patient cohorts exposed to the four common hCoVs and sera from convalescent patients infected with hCoV-EMC or SARS-CoV

    Canted-cosine-theta magnet (CCT)-A concept for high field accelerator magnets

    Get PDF
    Canted-Cosine-Theta (CCT) magnet is an accelerator magnet that superposes fields of nested and tilted solenoids that are oppositely canted. The current distribution of any canted layer generates a pure harmonic field as well as a solenoid field that can be cancelled with a similar but oppositely canted layer. The concept places windings within mandrel's ribs and spars that simultaneously intercept and guide Lorentz forces of each turn to prevent stress accumulation. With respect to other designs, the need for pre-stress in this concept is reduced by an order of magnitude making it highly compatible with the use of strain sensitive superconductors such as Nb3Sn or HTS. Intercepting large Lorentz forces is of particular interest in magnets with large bores and high field accelerator magnets like the one foreseen in the future high energy upgrade of the LHC. This paper describes the CCT concept and reports on the construction of CCT1 a "proof of principle" dipole
    corecore