1,716 research outputs found
Interstellar Hydrides
Interstellar hydrides -- that is, molecules containing a single heavy element
atom with one or more hydrogen atoms -- were among the first molecules detected
outside the solar system. They lie at the root of interstellar chemistry, being
among the first species to form in initially-atomic gas, along with molecular
hydrogen and its associated ions. Because the chemical pathways leading to the
formation of interstellar hydrides are relatively simple, the analysis of the
observed abundances is relatively straightforward and provides key information
about the environments where hydrides are found. Recent years have seen rapid
progress in our understanding of interstellar hydrides, thanks largely to
far-IR and submillimeter observations performed with the Herschel Space
Observatory. In this review, we will discuss observations of interstellar
hydrides, along with the advanced modeling approaches that have been used to
interpret them, and the unique information that has thereby been obtained.Comment: Accepted for publication in Annual Review of Astronomy and
Astrophysics 2016, Vol. 5
Gravitational collapse of the OMC-1 region
We have investigated the global dynamical state of the Integral Shaped
Filament in the Orion A cloud using new NH (1-0) large-scale, IRAM30m
observations. Our analysis of its internal gas dynamics reveals the presence of
accelerated motions towards the Orion Nebula Cluster, showing a characteristic
blue-shifted profile centred at the position of the OMC-1 South region. The
properties of these observed gas motions (profile, extension, and magnitude)
are consistent with the expected accelerations for the gravitational collapse
of the OMC-1 region and explain both the physical and kinematic structure of
this cloud.Comment: 5 pages, 2 figures; Accepted by A&
Complex organic molecules in strongly UV-irradiated gas
We investigate the presence of COMs in strongly UV-irradiated interstellar
molecular gas. We have carried out a complete millimetre line survey using the
IRAM30m telescope towards the edge of the Orion Bar photodissociation region
(PDR), close to the H2 dissociation front, a position irradiated by a very
intense far-UV (FUV) radiation field. These observations have been complemented
with 8.5 arcsec resolution maps of the H2CO 5(1,5)-4(1,4) and C18O 3-2 emission
at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines
from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH,
CH3CN, CH2NH, HNCO, H13-2CO, and HC3N (in decreasing order of abundance). For
each species, the large number of detected lines allowed us to accurately
constrain their rotational temperatures (Trot) and column densities (N). Owing
to subthermal excitation and intricate spectroscopy of some COMs (symmetric-
and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct
determination of N and Trot requires building rotational population diagrams of
their rotational ladders separately. We also provide accurate upper limit
abundances for chemically related molecules that might have been expected, but
are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC,
CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-LTE LVG
excitation analysis for molecules with known collisional rate coefficients,
suggests that some COMs arise from different PDR layers but we cannot resolve
them spatially. In particular, H2CO and CH3CN survive in the extended gas
directly exposed to the strong FUV flux (Tk = 150-250 K and Td > 60 K), whereas
CH3OH only arises from denser and cooler gas clumps in the more shielded PDR
interior (Tk = 40-50 K). We find a HCO/H2CO/CH3OH = 1/5/3 abundance ratio.
These ratios are different from those inferred in hot cores and shocks.Comment: 29 pages, 22 figures, 17 tables. Accepted for publication in A&A
(abstract abridged
Gravitationally lensed QSOs in the ISSIS/WSO-UV era
Gravitationally lensed QSOs (GLQs) at redshift z = 1-2 play a key role in
understanding the cosmic evolution of the innermost parts of active galaxies
(black holes, accretion disks, coronas and internal jets), as well as the
structure of galaxies at intermediate redshifts. With respect to studies of
normal QSOs, GLQ programmes have several advantages. For example, a monitoring
of GLQs may lead to unambiguous detections of intrinsic and extrinsic
variations. Both kinds of variations can be used to discuss central engines in
distant QSOs, and mass distributions and compositions of lensing galaxies. In
this context, UV data are of particular interest, since they correspond to
emissions from the immediate surroundings of the supermassive black hole. We
describe some observation strategies to analyse optically bright GLQs at z of
about 1.5, using ISSIS (CfS) on board World Space Observatory-Ultraviolet.Comment: 7 pages, 4 figures, Accepted for publication in Astrophysics & Space
Scienc
SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions
The hydroxyl radical (OH) is found in various environments within the
interstellar medium (ISM) of the Milky Way and external galaxies, mostly either
in diffuse interstellar clouds or in the warm, dense environments of newly
formed low-mass and high-mass stars, i.e, in the dense shells of compact and
ultracompact HII regions (UCHIIRs). Until today, most studies of interstellar
OH involved the molecule's radio wavelength hyperfine structure (hfs)
transitions. These lines are generally not in LTE and either masing or
over-cooling complicates their interpretation. In the past, observations of
transitions between different rotational levels of OH, which are at
far-infrared wavelengths, have suffered from limited spectral and angular
resolution. Since these lines have critical densities many orders of magnitude
higher than the radio wavelength ground state hfs lines and are emitted from
levels with more than 100 K above the ground state, when observed in emission,
they probe very dense and warm material. We probe the warm and dense molecular
material surrounding the UCHIIR/OH maser sources W3(OH), G10.62-0.39 and NGC
7538 IRS1 by studying the rotational
transition of OH in emission and, toward the last source also the molecule's
ground-state transition in absorption. We used the
Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe these OH
lines, which are near 1.84 THz (m) and 2.51 THz (m). We
clearly detect the OH lines, some of which are blended with each other.
Employing non-LTE radiative transfer calculations we predict line intensities
using models of a low OH abundance envelope versus a compact, high-abundance
source corresponding to the origin of the radio OH lines.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue
New two-colour light curves of Q0957+561: time delays and the origin of intrinsic variations
We extend the gr-band time coverage of the gravitationally lensed double
quasar Q0957+561. New gr light curves permit us to detect significant intrinsic
fluctuations, to determine new time delays, and thus to gain perspective on the
mechanism of intrinsic variability in Q0957+561. We use new optical frames of
Q0957+561 in the g and r passbands from January 2005 to July 2007. These frames
are part of an ongoing long-term monitoring with the Liverpool robotic
telescope. We also introduce two photometric pipelines that are applied to the
new gr frames of Q0957+561. The transformation pipeline incorporates
zero-point, colour, and inhomogeneity corrections to the instrumental
magnitudes, so final photometry to the 1-2% level is achieved for both quasar
components. The two-colour final records are then used to measure time delays.
The gr light curves of Q0957+561 show several prominent events and gradients,
and some of them (in the g band) lead to a time delay between components of 417
+/- 2 d (1 sigma). We do not find evidence of extrinsic variability in the
light curves of Q0957+561. We also explore the possibility of a delay between a
large event in the g band and the corresponding event in the r band. The gr
cross-correlation reveals a time lag of 4.0 +/- 2.0 d (1 sigma; the g-band
event is leading) that confirms a previous claim of the existence of a delay
between the g and r band in this lensed quasar. The time delays (between quasar
components and between optical bands) from the new records and previous ones in
similar bands indicate that most observed variations in Q0957+561 (amplitudes
of about 100 mmag and timescales of about 100 d) are very probably due to
reverberation within the gas disc around the supermassive black hole.Comment: 13 pages, 9 figures. Accepted for publication in A&
Structure function of the UV variability of Q0957+561
We present a detailed structure function analysis of the UV variability of
Q0957+561. From new optical observations, we constructed normalized structure
functions of the quasar luminosity at restframe wavelengths of 2100 and 2600
\AA. Old optical records also allow the structure function to be obtained at
2100 \AA, but 10 years ago in the observer's frame. These three structure
functions are then compared to predictions of both simple and relatively
sophisticated (incorporating two independent variable components) Poissonian
models. We do not find clear evidence of a chromatic mechanism of variability.
From the recent data, 100-d time-symmetric and 170-d time-asymmetric flares
are produced at both restframe wavelengths. Taking into account measurements of
time delays and the existence of an EUV/radio jet, reverberation is probably
the main mechanism of variability. Thus, two types of EUV/X-ray fluctuations
would be generated within or close to the jet and later reprocessed by the disc
gas in the two emission rings. The 100-d time-symmetric shots are also
responsible for most of the 2100 \AA variability detected in the old
experiment. However, there is no evidence of asymmetric shots in the old UV
variability. If reverberation is the involved mechanism of variability, this
could mean an intermittent production of high-energy asymmetric fluctuations.
The old records are also consistent with the presence of very short-lifetime
(10 d) symmetric flares, which may represent additional evidence of time
evolution. We also discuss the quasar structure that emerges from the
variability scenario.Comment: 7 pages, 4 figures. Accepted for publication in A&A (based on the
brightness records at http://arxiv.org/abs/0810.4619
Time delay of SBS 0909+532
The time delays between the components of a lensed quasar are basic tools to
analyze the expansion of the Universe and the structure of the main lens galaxy
halo. In this paper, we focus on the variability and time delay of the double
system SBS 0909+532A,B as well as the time behaviour of the field stars. We use
VR optical observations of SBS 0909+532A,B and the field stars in 2003. The
frames were taken at Calar Alto, Maidanak and Wise observatories, and the VR
light curves of the field stars and quasar components are derived from aperture
and point-spread function fitting methods. We measure the R-band time delay of
the system from the chi-square and dispersion techniques and 1000 synthetic
light curves based on the observed records. One nearby field star (SBS
0909+532c) is found to be variable, and the other two nearby field stars are
non-variable sources. With respect to the quasar components, the R-band records
seem more reliable and are more densely populated than the V-band ones. The
observed R-band fluctuations permit a pre-conditioned measurement of the time
delay. From the chi-square minimization, if we assume that the quasar emission
is observed first in B and afterwards in A (in agreement with basic
observations of the system and the corresponding predictions), we obtain a
delay of - 45 (+ 1)/(- 11) days (95% confidence interval). The dispersion
technique leads to a similar delay range. A by-product of the analysis is the
determination of a totally corrected flux ratio in the R band (corrected by the
time delay and the contamination due to the galaxy light). Our 95% measurement
of this ratio (0.575 +/- 0.014 mag) is in excellent agreement with previous
results from contaminated fluxes at the same time of observation.Comment: 26 pages, 15 figures, Astronomy and Astrophysics (see also
http://www.astro.ulg.ac.be/RPub/Colloques/JENAM/proceedings/proceedings.html
- Quasars Section
- …
