1,569 research outputs found
Classical-quantum correspondence in bosonic two-mode conversion systems: polynomial algebras and Kummer shapes
Bosonic quantum conversion systems can be modeled by many-particle
single-mode Hamiltonians describing a conversion of molecules of type A
into molecules of type B and vice versa. These Hamiltonians are analyzed in
terms of generators of a polynomially deformed algebra. In the
mean-field limit of large particle numbers, these systems become classical and
their Hamiltonian dynamics can again be described by polynomial deformations of
a Lie algebra, where quantum commutators are replaced by Poisson brackets. The
Casimir operator restricts the motion to Kummer shapes, deformed Bloch spheres
with cusp singularities depending on and . It is demonstrated that the
many-particle eigenvalues can be recovered from the mean-field dynamics using a
WKB type quantization condition. The many-particle state densities can be
semiclassically approximated by the time-periods of periodic orbits, which show
characteristic steps and singularities related to the fixed points, whose
bifurcation properties are analyzed.Comment: 13 pages, 13 figure
A non-Hermitian symmetric Bose-Hubbard model: eigenvalue rings from unfolding higher-order exceptional points
We study a non-Hermitian symmetric generalization of an -particle,
two-mode Bose-Hubbard system, modeling for example a Bose-Einstein condensate
in a double well potential coupled to a continuum via a sink in one of the
wells and a source in the other. The effect of the interplay between the
particle interaction and the non-Hermiticity on characteristic features of the
spectrum is analyzed drawing special attention to the occurrence and unfolding
of exceptional points (EPs). We find that for vanishing particle interaction
there are only two EPs of order which under perturbation unfold either
into eigenvalue pairs (and in case of odd, into an additional
zero-eigenvalue) or into eigenvalue triplets (third-order eigenvalue rings) and
single eigenvalues, depending on the direction of the
perturbation in parameter space. This behavior is described analytically using
perturbational techniques. More general EP unfoldings into eigenvalue rings up
to th order are indicated.Comment: minor change
Mean-field dynamics of a non-Hermitian Bose-Hubbard dimer
We investigate an -particle Bose-Hubbard dimer with an additional
effective decay term in one of the sites. A mean-field approximation for this
non-Hermitian many-particle system is derived, based on a coherent state
approximation. The resulting nonlinear, non-Hermitian two-level dynamics, in
particular the fixed point structures showing characteristic modifications of
the self-trapping transition, are analyzed. The mean-field dynamics is found to
be in reasonable agreement with the full many-particle evolution.Comment: 4 pages, 3 figures, published versio
Quasiclassical analysis of Bloch oscillations in non-Hermitian tight-binding lattices
Many features of Bloch oscillations in one-dimensional quantum lattices with
a static force can be described by quasiclassical considerations for example by
means of the acceleration theorem, at least for Hermitian systems. Here the
quasiclassical approach is extended to non-Hermitian lattices, which are of
increasing interest. The analysis is based on a generalised non-Hermitian phase
space dynamics developed recently. Applications to a single-band tight-binding
system demonstrate that many features of the quantum dynamics can be understood
from this classical description qualitatively and even quantitatively. Two
non-Hermitian and -symmetric examples are studied, a Hatano-Nelson lattice
with real coupling constants and a system with purely imaginary couplings, both
for initially localised states in space or in momentum. It is shown that the
time-evolution of the norm of the wave packet and the expectation values of
position and momentum can be described in a classical picture.Comment: 20 pages, 8 figures, typos corrected, slightly extended, accepted for
publication in New Journal of Physics in Focus Issue on Parity-Time Symmetry
in Optics and Photonic
Optical realization of the two-site Bose-Hubbard model in waveguide lattices
A classical realization of the two-site Bose-Hubbard Hamiltonian, based on
light transport in engineered optical waveguide lattices, is theoretically
proposed. The optical lattice enables a direct visualization of the
Bose-Hubbard dynamics in Fock space.Comment: to be published, J Phys. B (Fast Track Communication
Pay One, Get Hundreds for Free: Reducing Cloud Costs through Shared Query Execution
Cloud-based data analysis is nowadays common practice because of the lower
system management overhead as well as the pay-as-you-go pricing model. The
pricing model, however, is not always suitable for query processing as heavy
use results in high costs. For example, in query-as-a-service systems, where
users are charged per processed byte, collections of queries accessing the same
data frequently can become expensive. The problem is compounded by the limited
options for the user to optimize query execution when using declarative
interfaces such as SQL. In this paper, we show how, without modifying existing
systems and without the involvement of the cloud provider, it is possible to
significantly reduce the overhead, and hence the cost, of query-as-a-service
systems. Our approach is based on query rewriting so that multiple concurrent
queries are combined into a single query. Our experiments show the aggregated
amount of work done by the shared execution is smaller than in a
query-at-a-time approach. Since queries are charged per byte processed, the
cost of executing a group of queries is often the same as executing a single
one of them. As an example, we demonstrate how the shared execution of the
TPC-H benchmark is up to 100x and 16x cheaper in Amazon Athena and Google
BigQuery than using a query-at-a-time approach while achieving a higher
throughput
Breakdown of adiabatic transfer of light in waveguides in the presence of absorption
In atomic physics, adiabatic evolution is often used to achieve a robust and
efficient population transfer. Many adiabatic schemes have also been
implemented in optical waveguide structures. Recently there has been increasing
interests in the influence of decay and absorption, and their engineering
applications. Here it is shown that even a small decay can significantly
influence the dynamical behaviour of a system, above and beyond a mere change
of the overall norm. In particular, a small decay can lead to a breakdown of
adiabatic transfer schemes, even when both the spectrum and the eigenfunctions
are only sightly modified. This is demonstrated for the generalization of a
STIRAP scheme that has recently been implemented in optical waveguide
structures. Here the question how an additional absorption in either the
initial or the target waveguide influences the transfer property of the scheme
is addressed. It is found that the scheme breaks down for small values of the
absorption at a relatively sharp threshold, which can be estimated by simple
analytical arguments.Comment: 8 pages, 7 figures, revised and extende
Run Generation Revisited: What Goes Up May or May Not Come Down
In this paper, we revisit the classic problem of run generation. Run
generation is the first phase of external-memory sorting, where the objective
is to scan through the data, reorder elements using a small buffer of size M ,
and output runs (contiguously sorted chunks of elements) that are as long as
possible.
We develop algorithms for minimizing the total number of runs (or
equivalently, maximizing the average run length) when the runs are allowed to
be sorted or reverse sorted. We study the problem in the online setting, both
with and without resource augmentation, and in the offline setting.
(1) We analyze alternating-up-down replacement selection (runs alternate
between sorted and reverse sorted), which was studied by Knuth as far back as
1963. We show that this simple policy is asymptotically optimal. Specifically,
we show that alternating-up-down replacement selection is 2-competitive and no
deterministic online algorithm can perform better.
(2) We give online algorithms having smaller competitive ratios with resource
augmentation. Specifically, we exhibit a deterministic algorithm that, when
given a buffer of size 4M , is able to match or beat any optimal algorithm
having a buffer of size M . Furthermore, we present a randomized online
algorithm which is 7/4-competitive when given a buffer twice that of the
optimal.
(3) We demonstrate that performance can also be improved with a small amount
of foresight. We give an algorithm, which is 3/2-competitive, with
foreknowledge of the next 3M elements of the input stream. For the extreme case
where all future elements are known, we design a PTAS for computing the optimal
strategy a run generation algorithm must follow.
(4) Finally, we present algorithms tailored for nearly sorted inputs which
are guaranteed to have optimal solutions with sufficiently long runs
Quantum tunneling as a classical anomaly
Classical mechanics is a singular theory in that real-energy classical
particles can never enter classically forbidden regions. However, if one
regulates classical mechanics by allowing the energy E of a particle to be
complex, the particle exhibits quantum-like behavior: Complex-energy classical
particles can travel between classically allowed regions separated by potential
barriers. When Im(E) -> 0, the classical tunneling probabilities persist.
Hence, one can interpret quantum tunneling as an anomaly. A numerical
comparison of complex classical tunneling probabilities with quantum tunneling
probabilities leads to the conjecture that as ReE increases, complex classical
tunneling probabilities approach the corresponding quantum probabilities. Thus,
this work attempts to generalize the Bohr correspondence principle from
classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure
From Cooperative Scans to Predictive Buffer Management
In analytical applications, database systems often need to sustain workloads
with multiple concurrent scans hitting the same table. The Cooperative Scans
(CScans) framework, which introduces an Active Buffer Manager (ABM) component
into the database architecture, has been the most effective and elaborate
response to this problem, and was initially developed in the X100 research
prototype. We now report on the the experiences of integrating Cooperative
Scans into its industrial-strength successor, the Vectorwise database product.
During this implementation we invented a simpler optimization of concurrent
scan buffer management, called Predictive Buffer Management (PBM). PBM is based
on the observation that in a workload with long-running scans, the buffer
manager has quite a bit of information on the workload in the immediate future,
such that an approximation of the ideal OPT algorithm becomes feasible. In the
evaluation on both synthetic benchmarks as well as a TPC-H throughput run we
compare the benefits of naive buffer management (LRU) versus CScans, PBM and
OPT; showing that PBM achieves benefits close to Cooperative Scans, while
incurring much lower architectural impact.Comment: VLDB201
- …
