17,674 research outputs found
Domain general learning: Infants use social and non-social cues when learning object statistics.
Previous research has shown that infants can learn from social cues. But is a social cue more effective at directing learning than a non-social cue? This study investigated whether 9-month-old infants (N = 55) could learn a visual statistical regularity in the presence of a distracting visual sequence when attention was directed by either a social cue (a person) or a non-social cue (a rectangle). The results show that both social and non-social cues can guide infants' attention to a visual shape sequence (and away from a distracting sequence). The social cue more effectively directed attention than the non-social cue during the familiarization phase, but the social cue did not result in significantly stronger learning than the non-social cue. The findings suggest that domain general attention mechanisms allow for the comparable learning seen in both conditions
EPICA ice core Dronning Maud Land: first results from stable isotope measurements back to the LGM
Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption
We simulate climate change for the 2-year period following the eruption of Mount Pinatubo in the Philippines on June 15, 1991, with the ECHAM4 general circulation model (GCM). The model was forced by realistic aerosol spatial-time distributions and spectral radiative characteristics calculated using Stratospheric Aerosol, and Gas Experiment II extinctions and Upper Atmosphere Research Satellite-retrieved effective radii. We calculate statistical ensembles of GCM simulations with and without volcanic aerosols for 2 years after the eruption for three different sea surface temperatures (SSTs): climatological SST, El Nino-type SST of 1991-1993, and La Nina-type SST of 1984-1986. We performed detailed comparisons of calculated fields with observations, We analyzed the atmospheric response to Pinatubo radiative forcing and the ability of the GCM to reproduce it with different SSTs. The temperature of the tropical lower stratosphere increased by 4 K because of aerosol absorption of terrestrial longwave and solar near-infrared radiation. The heating is larger than observed, but that is because in this simulation we did not account for quasi-biennial oscillation (QBO) cooling and the cooling effects of volcanically induced ozone depletion. We estimated that both QBO and ozone depletion decrease the stratospheric temperature by about 2 K. The remaining 2 K stratospheric warming is in good agreement with observations. By comparing the runs with the Pinatubo aerosol forcing with those with no aerosols, we find that the model calculates a general cooling of the global troposphere, but with a clear winter warming pattern of surface air temperature over Northern Hemisphere continents. This pattern is consistent with the observed temperature patterns. The stratospheric heating and tropospheric summer cooling are directly caused by aerosol radiative effects, but the winter warming is indirect, produced by dynamical responses to the enhanced stratospheric latitudinal temperature gradient. The aerosol radiative forcing, stratospheric thermal response, and summer tropospheric cooling do not depend significantly on SST. The stratosphere-troposphere dynamic interactions and tropospheric climate response in winter are sensitive to SST
Probing spin dynamics and quantum relaxation in LiY0.998Ho0.002F4 via 19F NMR
We report measurements of 19F nuclear spin-lattice relaxation 1/T1 as a
function of temperature and external magnetic field in LiY0.998Ho0.002F4 single
crystal, a single-ion magnet exhibiting interesting quantum effects. The 19F
1/T1 is found to depend on the coupling with the diluted rare-earth (RE)
moments. Depending on the temperature range, a fast spin diffusion regime or a
diffusion limited regime is encountered. In both cases we find it possible to
use the 19F nucleus as a probe of the rare-earth spin dynamics. The results for
1/T1 show a behavior similar to that observed in molecular nanomagnets, a
result which we attribute to the discreteness of the energy levels in both
cases. At intermediate temperatures the lifetime broadening of the crystal
field split RE magnetic levels follows a T3 power law. At low temperature the
field dependence of 1/T1 shows peaks in correspondence to the critical magnetic
fields for energy level crossings (LC). The results can be explained by
inelastic scattering between the fluorine nuclear spins and the RE magnetic
levels. A key result of this study is that the broadening of the levels at LC
is found to be become extremely small at low temperatures, about 1.7 mT, a
value which is comparable to the weak dipolar fields at the RE lattice
positions. Thus, unlike the molecular magnets, decoherence effects are strongly
suppressed, and it may be possible to measure directly the level repulsions at
avoided level crossings.Comment: 21 pages, 5 figure
- …
