311 research outputs found

    Large-Scale Whole Genome Sequence Analysis of >22,000 Subjects Provides no Evidence of FMR1 Premutation Allele Involvement in Autism Spectrum Disorder

    Get PDF
    Expansion of a CGG repeat in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene on the X chromosome is the cause of Fragile X Syndrome (FXS). The repeat length of unaffected individuals varies between 5–40 repeats, whereas &gt;200 repeats are observed in cases of FXS. The intermediate range between 55–200 repeats is considered the premutation range and is observed in roughly 1:300 females and 1:900 males in the general population. With the availability of large-scale whole genome sequence (WGS) data and the development of computational tools to detect repeat expansions, we systematically examined the role of FMR1 premutation alleles in autism spectrum disorder (ASD) susceptibility, assess the prevalence, and consider the allelic stability between parents and offspring. We analyzed the WGS data of 22,053 subjects, including 32 FXS positive controls, 1359 population controls, and 5467 ASD families. We observed no FMR1 full mutation range repeats among the ASD parent-offspring families but identified 180 family members with premutation range alleles, which represents a higher prevalence compared to the independent WGS control sample and previous reports in the literature. A sex-specific analysis between probands and unaffected siblings did not reveal a significant increase in the burden of premutation alleles in either males or females with ASD. PCR validation, however, suggests an overestimation of the frequency of FMR1 premutation range alleles through computational analysis of WGS data. Overall, we show the utility of large-scale repeat expansion screening in WGS data and conclude that there is no apparent evidence of FMR1 premutation alleles contributing to ASD susceptibility.</p

    Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel

    Get PDF
    Group recommended a panel of mutations and variants that should be tested to determine carrier status within the CFTR gene as a part of population screening programs.1,2 This was initially done in response to the recommendations of an NIH CF Consensus Conference that CF carrier screening be consid-ered by all couples for use before conception or prenatally.3 At that time, the Working Group recognized limitations in our understanding of the population frequencies of several CF al-leles and proposed to review mutation distribution data after the first two years of the program. In 2002, as part of an ongo-ing effort to ensure that the cystic fibrosis carrier screening programs are current with respect to the scientific literature and other available data and practices, we initiated a second review of data on the distribution of mutations in different ethnic groups and we began to assess whether providers wer

    College of American Pathologists\u27 Laboratory Standards for Next-Generation Sequencing Clinical Tests

    Get PDF
    Context.-The higher throughput and lower per-base cost of next-generation sequencing (NGS) as compared to Sanger sequencing has led to its rapid adoption in clinical testing. The number of laboratories offering NGS-based tests has also grown considerably in the past few years, despite the fact that specific Clinical Laboratory Improvement Amendments of 1988/College of American Pathologists (CAP) laboratory standards had not yet been developed to regulate this technology. Objective.-To develop a checklist for clinical testing using NGS technology that sets standards for the analytic wet bench process and for bioinformatics or \u27\u27 dry bench\u27\u27 analyses. As NGS-based clinical tests are new to diagnostic testing and are of much greater complexity than traditional Sanger sequencing-based tests, there is an urgent need to develop new regulatory standards for laboratories offering these tests. Design.-To develop the necessary regulatory framework for NGS and to facilitate appropriate adoption of this technology for clinical testing, CAP formed a committee in 2011, the NGS Work Group, to deliberate upon the contents to be included in the checklist. Results.-A total of 18 laboratory accreditation checklist requirements for the analytic wet bench process and bioinformatics analysis processes have been included within CAP\u27s molecular pathology checklist (MOL). Conclusions.-This report describes the important issues considered by the CAP committee during the development of the new checklist requirements, which address documentation, validation, quality assurance, confirmatory testing, exception logs, monitoring of upgrades, variant interpretation and reporting, incidental findings, data storage, version traceability, and data transfer confidentiality

    Molecular Biomarkers for the Evaluation of Colorectal Cancer

    Get PDF
    Objectives: To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens

    Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology

    Get PDF
    OBJECTIVES: - To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. METHODS: - The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. RESULTS: - Twenty-one guideline statements were established. CONCLUSIONS: - Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented

    Testing for hereditary thrombophilia: a retrospective analysis of testing referred to a national laboratory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predisposition to venous thrombosis may be assessed through testing for defects and/or deficiencies of a number of hereditary factors. There is potential for confusion about which of these tests are appropriate in which settings. At least one set of recommendations has been published to guide such testing, but it is unclear how widely these have been disseminated.</p> <p>Methods</p> <p>We performed a retrospective analysis of laboratory orders and results at a national referral laboratory to gain insight into physicians' ordering practices, specifically comparing them against the ordering practices recommended by a 2002 College of American Pathologists (CAP) consensus conference on thrombophilia testing. Measurements included absolute and relative ordering volumes and positivity rates from approximately 200,000 thrombophilia tests performed from September 2005 through August 2006 at a national reference laboratory. Quality control data were used to estimate the proportion of samples that may have been affected by anticoagulant therapy. A sample of ordering laboratories was surveyed in order to assess potential measurement bias.</p> <p>Results</p> <p>Total antigen assays for protein C, protein S and antithrombin were ordered almost as frequently as functional assays for these analytes. The DNA test for factor V Leiden was ordered much more often than the corresponding functional assay. In addition, relative positivity rates coupled with elevations in prothrombin time (PT) in many of these patients suggest that these tests are often ordered in the setting of oral anticoagulant therapy.</p> <p>Conclusion</p> <p>In this real-world setting, testing for inherited thrombophilia is frequently at odds with the recommendations of the CAP consensus conference. There is a need for wider dissemination of concise thrombophilia testing guidelines.</p

    ECFS standards of care on CFTR-related disorders: Towards a comprehensive program for affected individuals

    Full text link
    After three publications defining an updated guidance on the diagnostic criteria for people with cystic fibrosis transmembrane conductance regulator (CFTR)-related disorders (pwCFTR-RDs), establishing its relationship to CFTR-dysfunction and describing the individual disorders, this fourth and last paper in the series addresses some critical challenges facing health care providers and pwCFTR-RD. Topics included are: 1) benefits and obstacles to collect data from pwCFTR-RD are discussed, together with the opportunity to integrate them into established CF-registries; 2) the potential of infants designated CRMS/CFSPID to develop a CFTR-RD and how to communicate this information; 3) a description of the challenges in genetic counseling, with particular regard to phenotypic variability, unknown long-term evolution, CFTR testing and pregnancy termination 4) a proposal for the assessment of potential barriers to the implementation and dissemination of the produced documents to health care professionals involved in the care of pwCFTR-RD and a process to monitor the implementation of the CFTR-RD recommendations; 5) clinical trials investigating the efficacy of CFTR modulators in CFTR-RD and how endpoints and outcomes might be adapted to the heterogeneity of these disorders

    Are p.I148T, p.R74W and p.D1270N cystic fibrosis causing mutations ?

    Get PDF
    BACKGROUND: To contribute further to the classification of three CFTR amino acid changes (p.I148T, p.R74W and p.D1270N) either as CF or CBAVD-causing mutations or as neutral variations. METHODS: The CFTR genes from individuals who carried at least one of these changes were extensively scanned by a well established DGGE assay followed by direct sequencing and familial segregation analysis of mutations and polymorphisms. RESULTS: Four CF patients (out of 1238) originally identified as carrying the p.I148T mutation in trans with a CF mutation had a second mutation (c.3199del6 or a novel mutation c.3395insA) on the p.I148T allele. We demonstrate here that the deletion c.3199del6 can also be associated with CF without p.I148T. Three CBAVD patients originally identified with the complex allele p.R74W-p.D1270N were also carrying p.V201M on this allele, by contrast with non CF or asymptomatic individuals including the mother of a CF child, who were carrying p.R74W-p.D1270N alone. CONCLUSION: These findings question p.I148T or p.R74W-p.D1270N as causing by themselves CF or CBAVD and emphazises the necessity to perform a complete scanning of CFTR genes and to assign the parental alleles when novel missense mutations are identified

    Diverse Clonal Fates Emerge Upon Drug Treatment of Homogeneous Cancer Cells

    Get PDF
    Even among genetically identical cancer cells, resistance to therapy frequently emerges from a small subset of those cells1-7. Molecular differences in rare individual cells in the initial population enable certain cells to become resistant to therapy7-9; however, comparatively little is known about the variability in the resistance outcomes. Here we develop and apply FateMap, a framework that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct resistant types. These resistant types are largely predetermined by molecular differences between cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can switch the resistant type of an initial cell, resulting in the generation and elimination of certain resistant types. Samples from patients show evidence for the existence of these resistant types in a clinical context. We observed diversity in resistant types across several single-cell-derived cancer cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result of the variability in intrinsic cell states may be a generic feature of responses to external cues
    corecore