1,379 research outputs found
A Growth Model for Multicellular Tumor Spheroids
Most organisms grow according to simple laws, which in principle can be
derived from energy conservation and scaling arguments, critically dependent on
the relation between the metabolic rate B of energy flow and the organism mass
m. Although this relation is generally recognized to be of the form B(m) = mp,
the specific value of the exponent p is the object of an ongoing debate, with
many mechanisms being postulated to support different predictions. We propose
that multicellular tumor spheroids provide an ideal experimental model system
for testing these allometric growth theories, especially under controlled
conditions of malnourishment and applied mechanical stress
Historical droughts in Mediterranean regions during the last 500 years: a data/model approach
International audienceWe present here a new method for comparing the output of General Circulation Models (GCMs) with proxy-based reconstructions, using time series of reconstructed and simulated climate parameters. The method uses k-means clustering to allow comparison between different periods that have similar spatial patterns, and a fuzzy logic-based distance measure in order to take reconstruction errors into account. The method has been used to test two coupled ocean-atmosphere GCMs over the Mediterranean region for the last 500 years, using an index of drought stress, the Palmer Drought Severity Index. The results showed that, whilst no model was able to exactly simulate the reconstructed changes, all simulations were an improvement over using the mean climate. Further, a good match was found after 1650 with a model run that took into account changes in volcanic forcing, solar irradiance, and greenhouse gases. A more detailed investigation of the output of this model showed the existence of a set of atmospheric circulation patterns linked to the patterns of drought stress: 1) a blocking pattern over northern Europe linked to dry conditions in the south prior to the Little Ice Age (LIA) and during the 20th century; 2) a NAO-positive like pattern with increased westerlies during the LIA; 3) a NAO-negative like period shown in the model prior to the LIA, but that occurs most frequently in the data during this period. The results of the comparison emphasise the importance of the inclusion of the various forcings in the models and help to understand the atmospheric changes connected to reconstructed climate changes
eIF4A inhibitors suppress cell-cycle feedback response and acquired resistance to CDK4/6 inhibition in cancer
CDK4/6 inhibitors are FDA-approved drugs for estrogen receptor-positive (ER+) breast cancer and are being evaluated to treat other tumor types, including KRAS-mutant non-small cell lung cancer (NSCLC). However, their clinical utility is often limited by drug resistance. Here, we sought to better understand the resistant mechanisms and help devise potential strategies to overcome this challenge. We show that treatment with CDK4/6 inhibitors in both ER+ breast cancer and KRAS-mutant NSCLC cells induces feedback upregulation of cyclin D1, CDK4, and cyclin E1, mediating drug resistance. We demonstrate that rocaglates, which preferentially target translation of key cell-cycle regulators, effectively suppress this feedback upregulation induced by CDK4/6 inhibition. Consequently, combination treatment of CDK4/6 inhibitor palbociclib with the eukaryotic initiation factor (eIF) 4A inhibitor, CR-1-31-B, is synergistic in suppressing the growth of these cancer cells in vitro and in vivo Furthermore, ER+ breast cancer and KRAS-mutant NSCLC cells that acquired resistance to palbociclib after chronic drug exposure are also highly sensitive to this combination treatment strategy. Our findings reveal a novel strategy using eIF4A inhibitors to suppress cell-cycle feedback response and to overcome resistance to CDK4/6 inhibition in cancer.Accepted manuscrip
Vegetation reconstruction to the mid-Holocene transition in Sahel and Sahara : first palynological results of a lacustrine record from the Mega-Lake Chad
Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions
We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I
Multifragmentation process for different mass asymmetry in the entrance channel around the Fermi energy
The influence of the entrance channel asymmetry upon the fragmentation
process is addressed by studying heavy-ion induced reactions around the Fermi
energy. The data have been recorded with the INDRA 4pi array. An event
selection method called the Principal Component Analysis is presented and
discussed. It is applied for the selection of central events and furthermore to
multifragmentation of single source events. The selected subsets of data are
compared to the Statistical Multifragmentation Model (SMM) to check the
equilibrium hypothesis and get the source characteristics. Experimental
comparisons show the evidence of a decoupling between thermal and compresional
(radial flow) degrees of freedom in such nuclear systems.Comment: 28 pages, 15 figures, article sumitted to Nuclear Physics
Dynamical effects in multifragmentation at intermediate energies
The fragmentation of the quasi-projectile is studied with the INDRA
multidetector for different colliding systems and incident energies in the
Fermi energy range. Different experimental observations show that a large part
of the fragmentation is not compatible with the statistical fragmentation of a
fully equilibrated nucleus. The study of internal correlations is a powerful
tool, especially to evidence entrance channel effects. These effects have to be
included in the theoretical descriptions of nuclear multifragmentation.Comment: 13 pages, 26 figures, submitted to Physical Review
- …
