604 research outputs found
Removal of acid gases and oxides of nitrogen from space cabin atmospheres
Removal of acid gases and oxides of nitrogen from spacecraft cabin atmospheres at ambient temperature
The catalytic removal of ammonia and nitrogen oxides from spacecabin atmospheres
Investigations were made on methods for the removal of ammonia and to a lesser extent nitrogen oxides in low concentrations from air. The catalytic oxidation of ammonia was studied over a temperature range of 250 F to 600 F and a concentration range 20 ppm to 500 ppm. Of the catalysts studied, 0.5 percent ruthenium supported on alumina was found to be superior. This material is active at temperatures as low as 250 F and was found to produce much less nitrous oxide than the other two active catalysts, platinum on alumina and Hopcalite. A quantitative design model was developed which will permit the performance of an oxidizer to be calculated. The ruthenium was found to be relatively insensitive to low concentrations of water and to oxygen concentration between 21 percent and 100 percent. Hydrogen sulfide was found to be a poison when injected in relatively large quantities. The adsorption of ammonia by copper sulfate treated silica gel was investigated at temperatures of 72 F and 100 F. A quantitative model was developed for predicting adsorption bed behavior
Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT)
T cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed on the surface of natural killer (NK) cells. TIGIT recognizes nectin and nectin-like adhesion molecules and thus plays a critical role in the innate immune response to malignant transformation. Although the TIGIT nectin-like protein-5 (necl-5) interaction is well understood, how TIGIT engages nectin-2, a receptor that is broadly over-expressed in breast and ovarian cancer, remains unknown. Here, we show that TIGIT bound to the immunoglobulin domain of nectin-2 that is most distal from the membrane with an affinity of 6 μm, which was moderately lower than the affinity observed for the TIGIT/necl-5 interaction (3.2 μm). The TIGIT/nectin-2 binding disrupted pre-assembled nectin-2 oligomers, suggesting that receptor-ligand and ligand-ligand associations are mutually exclusive events. Indeed, the crystal structure of TIGIT bound to the first immunoglobulin domain of nectin-2 indicated that the receptor and ligand dock using the same molecular surface and a conserved “lock and key” binding motifs previously observed to mediate nectin/nectin homotypic interactions as well as TIGIT/necl-5 recognition. Using a mutagenesis approach, we dissected the energetic basis for the TIGIT/nectin-2 interaction and revealed that an “aromatic key” of nectin-2 is critical for this interaction, whereas variations in the lock were tolerated. Moreover, we found that the C-C′ loop of the ligand dictates the TIGIT binding hierarchy. Altogether, these findings broaden our understanding of nectin/nectin receptor interactions and have implications for better understanding the molecular basis for autoimmune disease and cancer
Observation of anomalous spin-state segregation in a trapped ultra-cold vapor
We observe counter-intuitive spin segregation in an inhomogeneous sample of
ultra-cold, non-condensed Rubidium atoms in a magnetic trap. We use spatially
selective microwave spectroscopy to verify a model that accounts for the
differential forces on two internal spin states. In any simple understanding of
the cloud dynamics, the forces are far too small to account for the dramatic
transient spin polarizations observed. The underlying mechanism remains to be
elucidated.Comment: 5 pages, 3 figure
A homogenization study of the effects of cycling on the electronic conductivity of commercial lithium-ion battery cathodes
State-of-the-art image acquisition,
image analysis, and modern homogenization theory are used to study
the effects of cycling on commercial lithium-ion battery cathodes’
ability to conduct electronic current. This framework allows for a
rigorous computation of an effective, or macroscale, electronic conductivity
given an arbitrarily complicated three-dimensional microstructure
comprised of three different material phases, i.e., active material,
binder (polymer mixed with conductive carbon black), and electrolyte.
The approach explicitly takes into account the geometry and is thus
a vast improvement over the commonly used Bruggeman approximation.
We apply our framework to two different types of lithium-ion battery
cathodes before and after cycling. This leads us to predict an appreciable
decrease in the effective electronic conductivity as a direct result
of cycling. In addition, we present an ad-hoc “neighbor counting”
methodology which meaningfully quantifies the effect of binder detaching
from the surface of the active material due to the internal mechanical
stresses experienced under operating conditions, thereby supporting
the results of the homogenization calculations
The LPS O-antigen in photosynthetic Bradyrhizobium strains is dispensable for the establishment of a successful symbiosis with Aeschynomene legumes
The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected in the O-antigen synthesis by screening a transposon mutant library of the ORS285 strain for clones altered in colony morphology. Over the 10,000 mutants screened, five were selected and found to be mutated in two genes, rfaL, encoding for a putative O-antigen ligase and gdh encoding for a putative dTDP-glucose 4,6-dehydratase. Biochemical analysis confirmed that the LPS of these mutants completely lack the O-antigen region. However, no effect of the mutations could be detected on the symbiotic properties of the mutants indicating that the O-antigen region of photosynthetic Bradyrhizobium strains is not required for the establishment of symbiosis with Aeschynomene
The Architecture of the GW Ori Young Triple Star System and Its Disk: Dynamical Masses, Mutual Inclinations, and Recurrent Eclipses
We present spatially and spectrally resolved Atacama Large
Millimeter/submillimeter Array (ALMA) observations of gas and dust orbiting the
pre-main sequence hierarchical triple star system GW Ori. A forward-modeling of
the CO and CO =2-1 transitions permits a measurement of
the total stellar mass in this system, , and the
circum-triple disk inclination, . Optical spectra spanning
a 35 year period were used to derive new radial velocities and, coupled with a
spectroscopic disentangling technique, revealed that the A and B components of
GW Ori form a double-lined spectroscopic binary with a day
period; a tertiary companion orbits that inner pair with a day
period. Combining the results from the ALMA data and the optical spectra with
three epochs of astrometry in the literature, we constrain the individual
stellar masses in the system (,
, ) and
find strong evidence that at least one (and likely both) stellar orbital planes
are misaligned with the disk plane by as much as . A -band light
curve spanning 30 years reveals several new 30 day eclipse events
0.1-0.7~mag in depth and a 0.2 mag sinusoidal oscillation that is clearly
phased with the AB-C orbital period. Taken together, these features suggest
that the A-B pair may be partially obscured by material in the inner disk as
the pair approaches apoastron in the hierarchical orbit. Lastly, we conclude
that stellar evolutionary models are consistent with our measurements of the
masses and basic photospheric properties if the GW Ori system is 1 Myr
old.Comment: 26 pages, 15 figures, accepted to Ap
Health Product Risk Communication: Is the message getting through?
Risk communication is an important component of improving the health and safety of Canadians. For numerous departments and agencies at all levels of government, as well as public and private organizations, effective risk communication can protect Canadians from preventable hazards. The Minister of Health, on behalf of Health Canada (the Sponsor), asked the Council of Canadian Academies (the Council) to provide an evidence-based and authoritative assessment of the state of knowledge on measurement and evaluation of health risk communication. This assessment focuses on identifying tools, evaluation methods, gaps in the literature, and barriers and facilitators to carrying out successful communication and evaluation activities. Specifically, this assessment examines the following questions: How can the effectiveness of health risk communications be measured and evaluated? • What types of instruments/tools are currently available for health risk communication? • What methodological best practices can be used to evaluate the reach, use and benefit of health risk communication? • What research could be done to inform the measurement of the effectiveness of risk communications? • What are the existing barriers to effective risk communications and what best practices exist to address these challenges? To address the charge, the Council assembled a multi-disciplinary panel of 11 experts (the Panel) from Canada and abroad. The Panel’s composition reflected a balance of expertise, experience, and demonstrated leadership in academic, clinical, and regulatory fields. Each member served as an informed individual, rather than as a representative of a particular discipline, patron, organization, or region
- …
