6,235 research outputs found
Analytic model for a frictional shallow-water undular bore
We use the integrable Kaup-Boussinesq shallow water system, modified by a
small viscous term, to model the formation of an undular bore with a steady
profile. The description is made in terms of the corresponding integrable
Whitham system, also appropriately modified by friction. This is derived in
Riemann variables using a modified finite-gap integration technique for the
AKNS scheme. The Whitham system is then reduced to a simple first-order
differential equation which is integrated numerically to obtain an asymptotic
profile of the undular bore, with the local oscillatory structure described by
the periodic solution of the unperturbed Kaup-Boussinesq system. This solution
of the Whitham equations is shown to be consistent with certain jump conditions
following directly from conservation laws for the original system. A comparison
is made with the recently studied dissipationless case for the same system,
where the undular bore is unsteady.Comment: 24 page
Remnants of dark matter clumps
What happened to the central cores of tidally destructed dark matter clumps
in the Galactic halo? We calculate the probability of surviving of the remnants
of dark matter clumps in the Galaxy by modelling the tidal destruction of the
small-scale clumps. It is demonstrated that a substantial fraction of clump
remnants may survive through the tidal destruction during the lifetime of the
Galaxy if the radius of a core is rather small. The resulting mass spectrum of
survived clumps is extended down to the mass of the core of the cosmologically
produced clumps with a minimal mass. Since the annihilation signal is dominated
by the dense part of the core, destruction of the outer part of the clump
affects the annihilation rate relatively weakly and the survived dense remnants
of tidally destructed clumps provide a large contribution to the annihilation
signal in the Galaxy. The uncertainties in minimal clump mass resulting from
the uncertainties in neutralino models are discussed.Comment: 13 pages, 6 figures, added reference
Nonlinear dynamics of vortices in easy flow channels along grain boundaries in superconductors
A theory of nonlinear dynamics of mixed Abrikosov vortices with Josephson
cores (AJ vortices) on low-angle grain boundaries (GB) in superconductors is
proposed. Dynamics and pinning of AJ vortices determine the in-field current
transport through GB and the microwave response of polycrystal in the crucial
misorientation range of the exponential drop of the
local critical current density through GB. An exact solution
for an overdamped periodic AJ vortex structure driven along GB by an arbitrary
time dependent transport current in a dc magnetic field is obtained.
The dynamics of the AJ vortex chain is parameterized by solutions of two
coupled first order nonlinear differential equations which describe
self-consistently the time dependence of the vortex velocity and the AJ core
length. Exact formulas for the dc flux flow resistivity , and the
nonlinear voltage-current characteristics are obtained. Dynamics of the AJ
vortex chain driven by superimposed ac and dc currents is considered, and
general expressions for a linear complex resistivity and
dissipation of the ac field are obtained. A flux flow resonance is shown to
occur at large dc vortex velocities for which the imaginary part of
has peaks at the "washboard" ac frequency ,
where is the inter vortex spacing. This resonance can cause peaks and
portions with negative differential conductivity on the averaged dc
voltage-current (V-I) characteristics. Ac currents of large amplitude cause
generation of higher voltage harmonics and phase locking effects which manifest
themselves in steps on the averaged dc I-V curves at the Josephson voltages,
.Comment: 17 pages, 9 figures. submitted to Phys. Rev.
Formation of Quantum Shock Waves by Merging and Splitting Bose-Einstein Condensates
The processes of merging and splitting dilute-gas Bose-Einstein condensates
are studied in the nonadiabatic, high-density regime. Rich dynamics are found.
Depending on the experimental parameters, uniform soliton trains containing
more than ten solitons or the formation of a high-density bulge as well as
quantum (or dispersive) shock waves are observed experimentally within merged
BECs. Our numerical simulations indicate the formation of many vortex rings. In
the case of splitting a BEC, the transition from sound-wave formation to
dispersive shock-wave formation is studied by use of increasingly stronger
splitting barriers. These experiments realize prototypical dispersive shock
situations.Comment: 10 pages, 8 figure
Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion
We consider the space-time evolution of initial discontinuities of depth and
flow velocity for an integrable version of the shallow water Boussinesq system
introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq
model" for which a flat water surface is modulationally stable, we speak below
of "positive dispersion" model. This model also appears as an approximation to
the equations governing the dynamics of polarisation waves in two-component
Bose-Einstein condensates. We describe its periodic solutions and the
corresponding Whitham modulation equations. The self-similar, one-phase wave
structures are composed of different building blocks which are studied in
detail. This makes it possible to establish a classification of all the
possible wave configurations evolving from initial discontinuities. The
analytic results are confirmed by numerical simulations
Mass Transfer Mechanism in Real Crystals by Pulsed Laser Irradiation
The dynamic processes in the surface layers of metals subjected activity of a
pulsing laser irradiation, which destroyed not the crystalline structure in
details surveyed. The procedure of calculation of a dislocation density
generated in bulk of metal during the relaxation processes and at repeated
pulse laser action is presented. The results of evaluations coincide with high
accuracy with transmission electron microscopy dates. The
dislocation-interstitial mechanism of laser-stimulated mass-transfer in real
crystals is presented on the basis of the ideas of the interaction of structure
defects in dynamically deforming medium. The good compliance of theoretical and
experimental results approves a defining role of the presented mechanism of
mass transfer at pulse laser action on metals. The possible implementation this
dislocation-interstitial mechanism of mass transfer in metals to other cases of
pulsing influences is justifiedComment: 10 pages, 2 figures, Late
- …
