1 research outputs found

    Algebraic Rainich theory and antisymmetrisation in higher dimensions

    Full text link
    The classical Rainich(-Misner-Wheeler) theory gives necessary and sufficient conditions on an energy-momentum tensor TT to be that of a Maxwell field (a 2-form) in four dimensions. Via Einstein's equations these conditions can be expressed in terms of the Ricci tensor, thus providing conditions on a spacetime geometry for it to be an Einstein-Maxwell spacetime. One of the conditions is that T2T^2 is proportional to the metric, and it has previously been shown in arbitrary dimension that any tensor satisfying this condition is a superenergy tensor of a simple pp-form. Here we examine algebraic Rainich conditions for general pp-forms in higher dimensions and their relations to identities by antisymmetrisation. Using antisymmetrisation techniques we find new identities for superenergy tensors of these general (non-simple) forms, and we also prove in some cases the converse; that the identities are sufficient to determine the form. As an example we obtain the complete generalisation of the classical Rainich theory to five dimensions.Comment: 16 pages, LaTe
    corecore