243 research outputs found

    Explicit lower and upper bounds on the entangled value of multiplayer XOR games

    Get PDF
    XOR games are the simplest model in which the nonlocal properties of entanglement manifest themselves. When there are two players, it is well known that the bias --- the maximum advantage over random play --- of entangled players can be at most a constant times greater than that of classical players. Recently, P\'{e}rez-Garc\'{i}a et al. [Comm. Math. Phys. 279 (2), 2008] showed that no such bound holds when there are three or more players: the advantage of entangled players over classical players can become unbounded, and scale with the number of questions in the game. Their proof relies on non-trivial results from operator space theory, and gives a non-explicit existence proof, leading to a game with a very large number of questions and only a loose control over the local dimension of the players' shared entanglement. We give a new, simple and explicit (though still probabilistic) construction of a family of three-player XOR games which achieve a large quantum-classical gap (QC-gap). This QC-gap is exponentially larger than the one given by P\'{e}rez-Garc\'{i}a et. al. in terms of the size of the game, achieving a QC-gap of order N\sqrt{N} with N2N^2 questions per player. In terms of the dimension of the entangled state required, we achieve the same (optimal) QC-gap of N\sqrt{N} for a state of local dimension NN per player. Moreover, the optimal entangled strategy is very simple, involving observables defined by tensor products of the Pauli matrices. Additionally, we give the first upper bound on the maximal QC-gap in terms of the number of questions per player, showing that our construction is only quadratically off in that respect. Our results rely on probabilistic estimates on the norm of random matrices and higher-order tensors which may be of independent interest.Comment: Major improvements in presentation; results identica

    A new look at C*-simplicity and the unique trace property of a group

    Full text link
    We characterize when the reduced C*-algebra of a group has unique tracial state, respectively, is simple, in terms of Dixmier-type properties of the group C*-algebra. We also give a simple proof of the recent result by Breuillard, Kalantar, Kennedy and Ozawa that the reduced C*-algebra of a group has unique tracial state if and only if the amenable radical of the group is trivial.Comment: 8 page

    Mutually unbiased bases in dimension six: The four most distant bases

    Full text link
    We consider the average distance between four bases in dimension six. The distance between two orthonormal bases vanishes when the bases are the same, and the distance reaches its maximal value of unity when the bases are unbiased. We perform a numerical search for the maximum average distance and find it to be strictly smaller than unity. This is strong evidence that no four mutually unbiased bases exist in dimension six. We also provide a two-parameter family of three bases which, together with the canonical basis, reach the numerically-found maximum of the average distance, and we conduct a detailed study of the structure of the extremal set of bases.Comment: 10 pages, 2 figures, 1 tabl

    Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders

    Get PDF
    Udgivelsesdato: 2008-DecBACKGROUND: Toll-like receptors (TLRs) are structurally and functionally related and play important roles in the innate and adaptive immune system. By genome scanning, evidence of linkage between chromosome Xp22 and asthma and related atopic disorders has previously been obtained. Xp22 harbours the TLR7 and TLR8 genes. METHODS: The involvement of TLR7 and TLR8 in the aetiology of asthma and related disorders was investigated by a family based association analysis of two independently ascertained family samples comprising 540 and 424 individuals from 135 and 100 families, respectively. Ten affected individuals from families showing evidence of linkage to Xp22 were screened for sequence variations in TLR7 and 8, and nine single nucleotide polymorphisms (SNPs) identified were tested for association. RESULTS: In both samples, significant associations were observed for single SNPs and haplotypes of both TLR7 and 8 in all four phenotypes investigated: asthma, rhinitis, atopic dermatitis and increased specific IgE. The most significant association was seen for rs2407992 (TLR8) in asthma (p = 0.00023, sample A and B combined, recessive model). In TLR7, rs179008 showed the strongest association. Both rs179008 and rs2407992 are of putative functional significance, potentially affecting TLR7 processing and TLR8 splicing, respectively. Haplotypes comprising the major alleles of these two SNPs were overtransmitted to the affected offspring (eg, p = 0.00012 in asthma, combined sample, additive model). CONCLUSION: The results provide strong evidence that TLR7 and 8 may confer susceptibility to asthma and related atopic disorders and highlight these receptors as interesting targets for individualised, causally directed treatment

    Constructing Mutually Unbiased Bases in Dimension Six

    Full text link
    The density matrix of a qudit may be reconstructed with optimal efficiency if the expectation values of a specific set of observables are known. In dimension six, the required observables only exist if it is possible to identify six mutually unbiased complex 6x6 Hadamard matrices. Prescribing a first Hadamard matrix, we construct all others mutually unbiased to it, using algebraic computations performed by a computer program. We repeat this calculation many times, sampling all known complex Hadamard matrices, and we never find more than two that are mutually unbiased. This result adds considerable support to the conjecture that no seven mutually unbiased bases exist in dimension six.Comment: As published version. Added discussion of the impact of numerical approximations and corrected the number of triples existing for non-affine families (cf Table 3

    Exotic complex Hadamard matrices, and their equivalence

    Full text link
    In this paper we use a design theoretical approach to construct new, previously unknown complex Hadamard matrices. Our methods generalize and extend the earlier results of de la Harpe--Jones and Munemasa--Watatani and offer a theoretical explanation for the existence of some sporadic examples of complex Hadamard matrices in the existing literature. As it is increasingly difficult to distinguish inequivalent matrices from each other, we propose a new invariant, the fingerprint of complex Hadamard matrices. As a side result, we refute a conjecture of Koukouvinos et al. on (n-8)x(n-8) minors of real Hadamard matrices.Comment: 10 pages. To appear in Cryptography and Communications: Discrete Structures, Boolean Functions and Sequence

    A Characterization of right coideals of quotient type and its application to classification of Poisson boundaries

    Full text link
    Let GG be a co-amenable compact quantum group. We show that a right coideal of GG is of quotient type if and only if it is the range of a conditional expectation preserving the Haar state and is globally invariant under the left action of the dual discrete quantum group. We apply this result to theory of Poisson boundaries introduced by Izumi for discrete quantum groups and generalize a work of Izumi-Neshveyev-Tuset on SUq(N)SU_q(N) for co-amenable compact quantum groups with the commutative fusion rules. More precisely, we prove that the Poisson integral is an isomorphism between the Poisson boundary and the right coideal of quotient type by maximal quantum subgroup of Kac type. In particular, the Poisson boundary and the quantum flag manifold are isomorphic for any q-deformed classical compact Lie group.Comment: 28 pages, Remark 4.9 adde

    New holomorphically closed subalgebras of CC^*-algebras of hyperbolic groups

    Full text link
    We construct dense, unconditional subalgebras of the reduced group CC^*-algebra of a word-hyperbolic group, which are closed under holomorphic functional calculus and possess many bounded traces. Applications to the cyclic cohomology of group CC^*-algebras and to delocalized L2L^2-invariants of negatively curved manifolds are given

    A planar calculus for infinite index subfactors

    Full text link
    We develop an analog of Jones' planar calculus for II_1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.Comment: 56 pages, many figure
    corecore