3,307 research outputs found

    Commuting families in Hecke and Temperley-Lieb algebras

    No full text
    Abstract We define analogs of the Jucys-Murphy elements for the affine Temperley-Lieb algebra and give their explicit expansion in terms of the basis of planar Brauer diagrams. These Jucys-Murphy elements are a family of commuting elements in the affine Temperley-Lieb algebra, and we compute their eigenvalues on the generic irreducible representations. We show that they come from Jucys-Murphy elements in the affine Hecke algebra of type A, which in turn come from the Casimir element of the quantum group . We also give the explicit specializations of these results to the finite Temperley-Lieb algebra.12

    Frequency stability characterization of a broadband fiber Fabry-Perot interferometer

    Get PDF
    An optical etalon illuminated by a white light source provides a broadband comb-like spectrum that can be employed as a calibration source for astronomical spectrographs in radial velocity (RV) surveys for extrasolar planets. For this application the frequency stability of the etalon is critical, as its transmission spectrum is susceptible to frequency fluctuations due to changes in cavity temperature, optical power and input polarization. In this paper we present a laser frequency comb measurement technique to characterize the frequency stability of a custom-designed fiber Fabry-Perot interferometer (FFP). Simultaneously probing the stability of two etalon resonance modes, we assess both the absolute stability of the etalon and the long-term stability of the cavity dispersion. We measure mode positions with MHz precision, which corresponds to splitting the FFP resonances by a part in 500 and to RV precision of ~1 m/s. We address limiting systematic effects, including the presence of parasitic etalons, that need to be overcome to push the metrology of this system to the equivalent RV precision of 10 cm/s. Our results demonstrate a means to characterize environmentally-driven perturbations of etalon resonance modes across broad spectral bandwidths, as well as motivate the benefits and challenges of FFPs as spectrograph calibrators.Comment: 15 pages, 9 figures, accepted to Opt. Expres

    Archeops: an instrument for present and future cosmology

    Full text link
    Archeops is a balloon-borne instrument dedicated to measure the cosmic microwave background (CMB) temperature anisotropies. It has, in the millimetre domain (from 143 to 545 GHz), a high angular resolution (about 10 arcminutes) in order to constrain high l multipoles, as well as a large sky coverage fraction (30%) in order to minimize the cosmic variance. It has linked, before WMAP, Cobe large angular scales to the first acoustic peak region. From its results, inflation motivated cosmologies are reinforced with a flat Universe (Omega_tot=1 within 3%). The dark energy density and the baryonic density are in very good agreement with other independent estimations based on supernovae measurements and big bang nucleosynthesis. Important results on galactic dust emission polarization and their implications for Planck are also addressed.Comment: 4 pages, 2 figures, to appear in Proceedings of the Multiwavelength Cosmology Conference, June 2003, Mykonos Island, Greec

    What's Behind Acoustic Peaks in the Cosmic Microwave Background Anisotropies

    Get PDF
    We give a brief review of the physics of acoustic oscillations in Cosmic Microwave Background (CMB) anisotropies. As an example of the impact of their detection in cosmology, we show how the present data on CMB angular power spectrum on sub-degree scales can be used to constrain dark energy cosmological models.Comment: 6 pages, proceedings to the TAUP2001 conference, LNGS, Italy, Sept. 200

    Cosmological Parameter Extraction from the First Season of Observations with DASI

    Full text link
    The Degree Angular Scale Interferometer (\dasi) has measured the power spectrum of the Cosmic Microwave Background anisotropy over the range of spherical harmonic multipoles 100<l<900. We compare this data, in combination with the COBE-DMR results, to a seven dimensional grid of adiabatic CDM models. Adopting the priors h>0.45 and 0.0<=tau_c<=0.4, we find that the total density of the Universe Omega_tot=1.04+/-0.06, and the spectral index of the initial scalar fluctuations n_s=1.01+0.08-0.06, in accordance with the predictions of inflationary theory. In addition we find that the physical density of baryons Omega_b.h^2=0.022+0.004-0.003, and the physical density of cold dark matter Omega_cdm.h^2=0.14+/-0.04. This value of Omega_b.h^2 is consistent with that derived from measurements of the primordial abundance ratios of the light elements combined with big bang nucleosynthesis theory. Using the result of the HST Key Project h=0.72+/-0.08 we find that Omega_t=1.00+/-0.04, the matter density Omega_m=0.40+/-0.15, and the vacuum energy density Omega_lambda=0.60+/-0.15. (All 68% confidence limits.)Comment: 7 pages, 4 figures, minor changes in response to referee comment

    Cosmological parameters estimation in the Quintessence Paradigm

    Full text link
    We present cosmological parameter constraints on flat cosmologies dominated by dark energy using various cosmological data including the recent Archeops angular power spectrum measurements. A likelihood analysis of the existing Cosmic Microwave Background data shows that the presence of dark energy is not requested, in the absence of further prior. This comes from the fact that there exist degeneracies among the various cosmological parameters constrained by the Cosmic Microwave Background. We found that there is a degeneracy in a combination of the Hubble parameter H_0 and of the dark energy equation of state parameter w_Q, but that w_Q is not correlated with the primordial index n of scalar fluctuations and the baryon content Omega_b h^2. Preferred primordial index is n = 0.95 \pm 0.05 (68%) and baryon content Omega_b h^2 = 0.021 \pm 0.003. Adding constraint on the amplitude of matter fluctuations on small scales, sigma_8, obtained from clusters abundance or weak lensing data may allow to break the degenaracies, although present-day systematics uncertainties do not allow firm conclusions yet. The further addition of the Hubble Space Telescope measurements of the local distance scale and of the high redshift supernovae data allows to obtain tight constraints. When these constraints are combined together we find that the amount of dark energy is 0.7^{+0.10}_{-0.07} (95% C.L.) and that its equation of state is very close to those of the vacuum: w_Q 95% C.L.). In no case do we find that quintessence is prefered over the classical cosmological constant, although robust data on sigma_8 might rapidly bring light on this important issue.Comment: 6 pages, 4 figures, submitted to A&

    The first measurement of temperature standard deviation along the line-of-sight in galaxy clusters

    Full text link
    Clusters of galaxies are mainly formed by merging of smaller structures, according to the standard cosmological scenario. If the mass of a substructure is >10% of that of a galaxy cluster, the temperature distribution of the intracluster medium (ICM) in a merging cluster becomes inhomogeneous. Various methods have been used to derive the two-dimensional projected temperature distribution of the ICM. However, methods for studying temperature distribution along the line-of-sight through the cluster were absent. In this paper, we present the first measurement of the temperature standard deviation along the line-of-sight, using as a reference case the multifrequency SZ measurements of the Bullet Cluster. We find that the value of the temperature standard deviation is high and equals to (10.6+/-3.8) keV in the Bullet Cluster. This result shows that the temperature distribution in the Bullet Cluster is strongly inhomogeneous along the line-of-sight and provides a new method for studying galaxy clusters in depth.Comment: 5 pages, 1 figure, published in MNRAS Letter

    Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt: I. Statics

    Full text link
    Molecular dynamics simulations were conducted to investigate the structural properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N=1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. For the rings, the radius of gyration squared was found to scale as N to the 4/5 power for an intermediate regime and N to the 2/3 power for the larger rings indicating an overall conformation of a crumpled globule. However, almost all beads of the rings are "surface beads" interacting with beads of other rings, a result also in agreement with a primitive path analysis performed in the following paper (DOI: 10.1063/1.3587138). Details of the internal conformational properties of the ring and linear polymers as well as their packing are analyzed and compared to current theoretical models.Comment: 15 pages, 14 figure
    corecore