358 research outputs found

    Finite element modeling of laser assisted friction stir welding of carbon steels for enhanced sustainability of welded joints

    Get PDF
    Part of: Seliger, Günther (Ed.): Innovative solutions : proceedings / 11th Global Conference on Sustainable Manufacturing, Berlin, Germany, 23rd - 25th September, 2013. - Berlin: Universitätsverlag der TU Berlin, 2013. - ISBN 978-3-7983-2609-5 (online). - http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-40276. - pp. 247-251.In Friction stir welding (FSW) of carbon steels, process parameters must be set to avoid defects such as warm holes. Proper selection of process parameters also affects the final grain microstructure and phase transformations and, ultimately, the weld’s mechanical properties. Process parameters, including laserassisted heating, of AISI 1045 carbon steel were investigated via a 3D finite element method (FEM) model. The laser action was modeled as heat source with constant flux. The simulation findings favorably agree with experiments reported in the literature and suggesting that with laser-assisted-FSW welding can be performed at higher traverse speeds (400 vs. 100 mm/min) while maintaining defect free weld. Also, evolved phase transformations are predicted across the weld geometry as time progresses. Such findings will help in the prediction of sound welding parameters and in estimating the mechanical properties of the various regions of the weld leading to more sustainable joints

    Responses of the Brans-Dicke field due to gravitational collapses

    Full text link
    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω\omega ~ -1.5. If the Brans-Dicke coupling is greater than -1.5, the TuuT_{uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the TvvT_{vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.Comment: 28 pages, 14 figure

    Scaling of curvature in sub-critical gravitational collapse

    Get PDF
    We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.Comment: Revtex, 2 figures, Discussion modified, to appear in Phys. Rev.

    Dynamics of false vacuum bubbles: beyond the thin shell approximation

    Full text link
    We numerically study the dynamics of false vacuum bubbles which are inside an almost flat background; we assumed spherical symmetry and the size of the bubble is smaller than the size of the background horizon. According to the thin shell approximation and the null energy condition, if the bubble is outside of a Schwarzschild black hole, unless we assume Farhi-Guth-Guven tunneling, expanding and inflating solutions are impossible. In this paper, we extend our method to beyond the thin shell approximation: we include the dynamics of fields and assume that the transition layer between a true vacuum and a false vacuum has non-zero thickness. If a shell has sufficiently low energy, as expected from the thin shell approximation, it collapses (Type 1). However, if the shell has sufficiently large energy, it tends to expand. Here, via the field dynamics, field values of inside of the shell slowly roll down to the true vacuum and hence the shell does not inflate (Type 2). If we add sufficient exotic matters to regularize the curvature near the shell, inflation may be possible without assuming Farhi-Guth-Guven tunneling. In this case, a wormhole is dynamically generated around the shell (Type 3). By tuning our simulation parameters, we could find transitions between Type 1 and Type 2, as well as between Type 2 and Type 3. Between Type 2 and Type 3, we could find another class of solutions (Type 4). Finally, we discuss the generation of a bubble universe and the violation of unitarity. We conclude that the existence of a certain combination of exotic matter fields violates unitarity.Comment: 40 pages, 41 figure

    Case management

    No full text
    Provides an overview of methods of diagnosis, treatment and patient care in complex emergencies. This chapter: ■ provides guidelines for initial management, including emergency triage – for the rapid identifi cation and treatment of patients at greatest risk of dying – and clinical assessment ■ discusses confi rmatory diagnosis of malaria using microscopy and rapid diagnostic tests (RDTs) ■ outlines factors that determine the choice of antimalarial drug ■ describes antimalarial drug treatment for uncomplicated malaria, subsequent follow-up, and the management of treatment failures ■ describes the assessment and treatment of anaemia ■ describes the treatment of severe P. falciparum malaria and its associated complications, including resuscitation, treatment with antimalarial drugs, and nursing care ■ provides guidance on the prevention and treatment of malaria in special groups (pregnant women, malnourished patients, returning refugees and displaced persons)

    Quantum corrections to critical phenomena in gravitational collapse

    Get PDF
    We investigate conformally coupled quantum matter fields on spherically symmetric, continuously self-similar backgrounds. By exploiting the symmetry associated with the self-similarity the general structure of the renormalized quantum stress-energy tensor can be derived. As an immediate application we consider a combination of classical, and quantum perturbations about exactly critical collapse. Generalizing the standard argument which explains the scaling law for black hole mass, MηηβM \propto |\eta-\eta^*|^\beta, we demonstrate the existence of a quantum mass gap when the classical critical exponent satisfies β0.5\beta \geq 0.5. When β<0.5\beta < 0.5 our argument is inconclusive; the semi-classical approximation breaks down in the spacetime region of interest.Comment: RevTeX, 6 pages, 3 figures included using psfi

    Scale invariance and critical gravitational collapse

    Get PDF
    We examine ways to write the Choptuik critical solution as the evolution of scale invariant variables. It is shown that a system of scale invariant variables proposed by one of the authors does not evolve periodically in the Choptuik critical solution. We find a different system, based on maximal slicing. This system does evolve periodically, and may generalize to the case of axisymmetry or of no symmetry at all.Comment: 7 pages, 3 figures, Revtex, discussion modified to clarify presentatio

    Three-dimensional adaptive evolution of gravitational waves in numerical relativity

    Get PDF
    Adaptive techniques are crucial for successful numerical modeling of gravitational waves from astrophysical sources such as coalescing compact binaries, since the radiation typically has wavelengths much larger than the scale of the sources. We have carried out an important step toward this goal, the evolution of weak gravitational waves using adaptive mesh refinement in the Einstein equations. The 2-level adaptive simulation is compared with unigrid runs at coarse and fine resolution, and is shown to track closely the features of the fine grid run.Comment: REVTeX, 7 pages, including three figures; submitted to Physical Review

    Critical phenomena of collapsing massless scalar wave packets

    Full text link
    An analytical model that represents the collapse of a massless scalar wave packet with continuous self-similarity is constructed, and critical phenomena are found. In the supercritical case, the mass of black holes is finite and has the form M(pp)γM \propto (p - p^{*})^{\gamma}, with γ=1/2\gamma = 1/2.Comment: Latex file, including 2 figures, avalaible upon reques

    Mass-Inflation in Dynamical Gravitational Collapse of a Charged Scalar-Field

    Get PDF
    We study the inner-structure of a charged black-hole which is formed from the gravitational collapse of a self-gravitating charged scalar-field. Starting with a regular spacetime, we follow the evolution through the formation of an apparent horizon, a Cauchy horizon and a final central singularity. We find a null, weak, mass-inflation singularity along the Cauchy horizon, which is a precursor of a strong, spacelike singularity along the r=0r=0 hypersurface.Comment: Latex, 13 pages including 4 figures, Revtex.st
    corecore