566 research outputs found

    Theory of Magnetic Anisotropy in III_{1-x}Mn_{x}V Ferromagnets

    Full text link
    We present a theory of magnetic anisotropy in III1xMnxV{\rm III}_{1-x}{\rm Mn}_{x}{\rm V} diluted magnetic semiconductors with carrier-induced ferromagnetism. The theory is based on four and six band envelope functions models for the valence band holes and a mean-field treatment of their exchange interactions with Mn++{\rm Mn}^{++} ions. We find that easy-axis reorientations can occur as a function of temperature, carrier density pp, and strain. The magnetic anisotropy in strain-free samples is predicted to have a p5/3p^{5/3} hole-density dependence at small pp, a p1p^{-1} dependence at large pp, and remarkably large values at intermediate densities. An explicit expression, valid at small pp, is given for the uniaxial contribution to the magnetic anisotropy due to unrelaxed epitaxial growth lattice-matching strains. Results of our numerical simulations are in agreement with magnetic anisotropy measurements on samples with both compressive and tensile strains. We predict that decreasing the hole density in current samples will lower the ferromagnetic transition temperature, but will increase the magnetic anisotropy energy and the coercivity.Comment: 15 pages, 15 figure

    Stability of trions in strongly spin-polarized two-dimensional electron gases

    Full text link
    Low-temperature magneto-photoluminescence studies of negatively charged excitons (X- trions) are reported for n-type modulation-doped ZnSe/Zn(Cd,Mn)Se quantum wells over a wide range of Fermi energy and spin-splitting. The magnetic composition is chosen such that these magnetic two-dimensional electron gases (2DEGs) are highly spin-polarized even at low magnetic fields, throughout the entire range of electron densities studied (5e10 to 6.5e11 cm^-2). This spin polarization has a pronounced effect on the formation and energy of X-, with the striking result that the trion ionization energy (the energy separating X- from the neutral exciton) follows the temperature- and magnetic field-tunable Fermi energy. The large Zeeman energy destabilizes X- at the nu=1 quantum limit, beyond which a new PL peak appears and persists to 60 Tesla, suggesting the formation of spin-triplet charged excitons.Comment: 5 pages (RevTex), 4 embedded EPS figs. Submitted to PRB-R

    Theory of Magnetic Properties and Spin-Wave Dispersion for Ferromagnetic (Ga,Mn)As

    Full text link
    We present a microscopic theory of the long-wavelength magnetic properties of the ferromagnetic diluted magnetic semiconductor (Ga,Mn)As. Details of the host semiconductor band structure, described by a six-band Kohn-Luttinger Hamiltonian, are taken into account. We relate our quantum-mechanical calculation to the classical micromagnetic energy functional and determine anisotropy energies and exchange constants. We find that the exchange constant is substantially enhanced compared to the case of a parabolic heavy-hole-band model.Comment: 9 pages, 4 figure

    An Exploratory Qualitative Study of Elder Abuse and Neglect in Long-Term Settings

    Get PDF
    Older adults living in long-term care settings seek support as they age. Due to health concerns, they may be vulnerable to elder abuse and neglect. As older adults continue to reach older adulthood at later ages, elder abuse will continue to increase and adversely affect older adults living in both long-term care and home settings. Those who experience elder abuse have many negative health- related outcomes. Understanding elder abuse and neglect is critical in both addressing it and creating innovative prevention strategies. This exploratory qualitative research study included interviews with five professionals working in settings that have equipped them with an understanding and expertise of elder abuse and neglect in these settings. Results suggest that agency efforts, workplace culture, and resident risk factors greatly affect the occurrence of elder abuse in long-term care settings. These findings revealed areas of improvement and potential pathways towards addressing elder abuse and neglect

    To Honor Our Elders: Exploration of Elder Abuse in Long-Term Settings

    Get PDF
    Older adults living in long-term care settings seek support as they age. Due to their health concerns, they may be vulnerable to elder abuse and neglect. As older adults continue to live longer and the Baby Boomer generation reaches older adulthood, elder abuse will only continue to increase and adversely affect older adults living in both long-term care and home settings. This thesis explores the causes, instances, and interventions of elder abuse in long term settings. Understanding elder abuse and neglect is paramount towards effectively addressing it and creating innovative interventions and preventative strategies. Those who experience elder abuse have many negative health- related outcomes. An examination of the types of abuse and neglect occurring in long term care settings in addition to the risk factors, training practices of employees, and suggested interventions provide a better understanding as well as a foundation for potential interventions supporting older adults as they age with health needs. This exploratory qualitative research study included interviews with five professionals working in settings that have equipped them with an understanding and expertise of elder abuse and neglect in these settings. Results suggest that agency efforts, workplace culture, and resident risk factors greatly affect the occurrence of elder abuse in long-term care settings. These findings revealed areas of improvement and potential pathways towards tackling elder abuse and neglect

    A theory of ferromagnetism in planar heterostructures of (Mn,III)-V semiconductors

    Get PDF
    A density functional theory of ferromagnetism in heterostructures of compound semiconductors doped with magnetic impurities is presented. The variable functions in the density functional theory are the charge and spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied to study the Curie temperature of planar heterostructures of III-V semiconductors doped with manganese atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie temperature. By means of these results, we attempt to understand the observed dependence of the Curie temperature of planar δ\delta-doped ferromagnetic structures on variation of their properties. We predict a large increase of the Curie Temperature by additional confinement of the holes in a δ\delta-doped layer of Mn by a quantum well.Comment: 8 pages, 7 figure

    Light and electric field control of ferromagnetism in magnetic quantum structures

    Full text link
    A strong influence of illumination and electric bias on the Curie temperature and saturation value of the magnetization is demonstrated for semiconductor structures containing a modulation-doped p-type Cd0.96Mn0.04Te quantum well placed in various built-in electric fields. It is shown that both light beam and bias voltage generate an isothermal and reversible cross-over between the paramagnetic and ferromagnetic phases, in the way that is predetermined by the structure design. The observed behavior is in quantitative agreement with the expectations for systems, in which ferromagnetic interactions are mediated by the weakly disordered two-dimensional hole liquid.Comment: 4 pages and 3 figure

    Interlayer coupling in ferromagnetic semiconductor superlattices

    Full text link
    We develop a mean-field theory of carrier-induced ferromagnetism in diluted magnetic semiconductors. Our approach represents an improvement over standard RKKY model allowing spatial inhomogeneity of the system, free-carrier spin polarization, finite temperature, and free-carrier exchange and correlation to be accounted for self-consistently. As an example, we calculate the electronic structure of a Mnx_xGa1x_{1-x}As/GaAs superlattice with alternating ferromagnetic and paramagnetic layers and demonstrate the possibility of semiconductor magnetoresistance systems with designed properties.Comment: 4 pages, 4 figure
    corecore