2,721 research outputs found

    Investment intermediaries in economic development: Linking public pension funds to urban revitalization

    Get PDF
    It is difficult for large investors, such as pension funds, to make investments in EDMs because they must make very large investments. The investments in communities of need, however, are usually small. The most successful strategy to overcome these two problems is for investors to work in concert with intermediaries that can aggregate the investments and community partners that understand both the need of communities and know how to tell “the story” to investors.

    WASP-1: A lithium- and metal-rich star with an oversized planet

    Full text link
    In this paper we present our results of a comprehensive spectroscopicanalysis of WASP-1, the host star to the exoplanet WASP-1b. We derive T_eff = 6110 +/- 45 K, log g = 4.28 +/- 0.15, and [M/H] = 0.23 +/- 0.08, and also a high abundance of lithium, log n(Li) = 2.91 +/- 0.05. These parameters suggests an age for the system of 1-3 Gyr and a stellar mass of 1.25-1.35 M_sun. This means that WASP-1 has properties very similar to those of HD 149026, the host star for the highest density planet yet detected. Moreover, their planets orbit at comparable distances and receive comparable irradiating fluxes from their host stars. However, despite the similarity of WASP-1 with HD 149026, their planets have strongly different densities. This suggests that gas-giant planet density is not a simple function of host-star metallicity or of radiation environment at ages of ~2 Gyr.Comment: Accepted for publication in MNRAS. 6 pages, 4 figure

    Detecting Differential Rotation and Starspot Evolution on the M dwarf GJ 1243 with Kepler

    Get PDF
    We present an analysis of the starspots on the active M4 dwarf GJ 1243, using four years of time series photometry from Kepler. A rapid P=0.592596±0.00021P = 0.592596\pm0.00021 day rotation period is measured due to the \sim2.2\% starspot-induced flux modulations in the light curve. We first use a light curve modeling approach, using a Monte Carlo Markov Chain sampler to solve for the longitudes and radii of the two spots within 5-day windows of data. Within each window of time the starspots are assumed to be unchanging. Only a weak constraint on the starspot latitudes can be implied from our modeling. The primary spot is found to be very stable over many years. A secondary spot feature is present in three portions of the light curve, decays on 100-500 day timescales, and moves in longitude over time. We interpret this longitude shearing as the signature of differential rotation. Using our models we measure an average shear between the starspots of 0.0047 rad day1^{-1}, which corresponds to a differential rotation rate of ΔΩ=0.012±0.002\Delta\Omega = 0.012 \pm 0.002 rad day1^{-1}. We also fit this starspot phase evolution using a series of bivariate Gaussian functions, which provides a consistent shear measurement. This is among the slowest differential rotation shear measurements yet measured for a star in this temperature regime, and provides an important constraint for dynamo models of low mass stars.Comment: 13 pages, 7 figures, ApJ Accepte

    An Improved Method for Estimating the Masses of Stars with Transiting Planets

    Get PDF
    To determine the physical parameters of a transiting planet and its host star from photometric and spectroscopic analysis, it is essential to independently measure the stellar mass. This is often achieved by the use of evolutionary tracks and isochrones, but the mass result is only as reliable as the models used. The recent paper by Torres et al (2009) showed that accurate values for stellar masses and radii could be obtained from a calibration using T_eff, log g and [Fe/H]. We investigate whether a similarly good calibration can be obtained by substituting log rho - the fundamental parameter measured for the host star of a transiting planet - for log g, and apply this to star-exoplanet systems. We perform a polynomial fit to stellar binary data provided in Torres et al (2009) to obtain the stellar mass and radius as functions of T_eff, log rho and [Fe/H], with uncertainties on the fit produced from a Monte Carlo analysis. We apply the resulting equations to measurements for seventeen SuperWASP host stars, and also demonstrate the application of the calibration in a Markov Chain Monte Carlo analysis to obtain accurate system parameters where spectroscopic estimates of effective stellar temperature and metallicity are available. We show that the calibration using log rho produces accurate values for the stellar masses and radii; we obtain masses and radii of the SuperWASP stars in good agreement with isochrone analysis results. We ascertain that the mass calibration is robust against uncertainties resulting from poor photometry, although a good estimate of stellar radius requires good-quality transit light curve to determine the duration of ingress and egress.Comment: 5 pages, 2 figures, accepted for publication in A&

    Possible geopotential improvement from satellite altimetry

    Get PDF
    Possible geopotential improvement from satellite altimetr

    Rotation of Late-Type Stars in Praesepe with K2

    Get PDF
    We have Fourier analyzed 941 K2 light curves of likely members of Praesepe, measuring periods for 86% and increasing the number of rotation periods (P) by nearly a factor of four. The distribution of P vs. (V-K), a mass proxy, has three different regimes: (V-K)<1.3, where the rotation rate rapidly slows as mass decreases; 1.3<(V-K)<4.5, where the rotation rate slows more gradually as mass decreases; and (V-K)>4.5, where the rotation rate rapidly increases as mass decreases. In this last regime, there is a bimodal distribution of periods, with few between \sim2 and \sim10 days. We interpret this to mean that once M stars start to slow down, they do so rapidly. The K2 period-color distribution in Praesepe (\sim790 Myr) is much different than in the Pleiades (\sim125 Myr) for late F, G, K, and early-M stars; the overall distribution moves to longer periods, and is better described by 2 line segments. For mid-M stars, the relationship has similarly broad scatter, and is steeper in Praesepe. The diversity of lightcurves and of periodogram types is similar in the two clusters; about a quarter of the periodic stars in both clusters have multiple significant periods. Multi-periodic stars dominate among the higher masses, starting at a bluer color in Praesepe ((V-K)\sim1.5) than in the Pleiades ((V-K)\sim2.6). In Praesepe, there are relatively more light curves that have two widely separated periods, ΔP>\Delta P >6 days. Some of these could be examples of M star binaries where one star has spun down but the other has not.Comment: Accepted by Ap

    Extending Feynman's Formalisms for Modelling Human Joint Action Coordination

    Full text link
    The recently developed Life-Space-Foam approach to goal-directed human action deals with individual actor dynamics. This paper applies the model to characterize the dynamics of co-action by two or more actors. This dynamics is modelled by: (i) a two-term joint action (including cognitive/motivatonal potential and kinetic energy), and (ii) its associated adaptive path integral, representing an infinite--dimensional neural network. Its feedback adaptation loop has been derived from Bernstein's concepts of sensory corrections loop in human motor control and Brooks' subsumption architectures in robotics. Potential applications of the proposed model in human--robot interaction research are discussed. Keywords: Psycho--physics, human joint action, path integralsComment: 6 pages, Late
    corecore