5,580 research outputs found

    Generalized LFT-Based Representation of Parametric Uncertain Models

    Get PDF
    In this paper, we introduce a general descriptor-type linear fractional transformation (LFT) representation of rational parametric matrices. This is a generalized representation of arbitrary rationally dependent multivariate functions in LFT-form. As applications, we develop explicit LFT-realizations of the transfer-function matrix of a linear descriptor system whose state-space matrices depend rationally on a set of uncertain parameters. The resulting descriptor LFT-based uncertainty models generally have smaller orders than those obtained by using the standard LFT-based modelling approach. An example of an uncertain vehicle model illustrates the capability of the method

    Dynamics of a strongly interacting Fermi gas: the radial quadrupole mode

    Full text link
    We report on measurements of an elementary surface mode in an ultracold, strongly interacting Fermi gas of 6Li atoms. The radial quadrupole mode allows us to probe hydrodynamic behavior in the BEC-BCS crossover without being influenced by changes in the equation of state. We examine frequency and damping of this mode, along with its expansion dynamics. In the unitarity limit and on the BEC side of the resonance, the observed frequencies agree with standard hydrodynamic theory. However, on the BCS side of the crossover, a striking down shift of the oscillation frequency is observed in the hydrodynamic regime as a precursor to an abrupt transition to collisionless behavior; this indicates coupling of the oscillation to fermionic pairs.Comment: 11 pages, 11 figures v2: minor change

    Observation of the Pairing Gap in a Strongly Interacting Fermi Gas

    Full text link
    We study fermionic pairing in an ultracold two-component gas of 6^6Li atoms by observing an energy gap in the radio-frequency excitation spectra. With control of the two-body interactions via a Feshbach resonance we demonstrate the dependence of the pairing gap on coupling strength, temperature, and Fermi energy. The appearance of an energy gap with moderate evaporative cooling suggests that our full evaporation brings the strongly interacting system deep into a superfluid state.Comment: 18 pages, 3 figure

    Magnetic field control of elastic scattering in a cold gas of fermionic lithium atoms

    Get PDF
    We study elastic collisions in an optically trapped spin mixture of fermionic lithium atoms in the presence of magnetic fields up to 1.5kG by measuring evaporative loss. Our experiments confirm the expected magnetic tunability of the scattering length by showing the main features of elastic scattering according to recent calculations. We measure the zero crossing of the scattering length that is associated with a predicted Feshbach resonance at 530(3)G. Beyond the resonance we observe the expected large cross section in the triplet scattering regime

    Exploring the BEC-BCS Crossover with an Ultracold Gas of 6^6Li Atoms

    Full text link
    We present an overview of our recent measurements on the crossover from a Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer superfluid. The experiments are performed on a two-component spin-mixture of 6^6Li atoms, where a Fesh\-bach resonance serves as the experimental key to tune the s-wave scattering length and thus to explore the various interaction regimes. In the BEC-BCS crossover, we have characterized the interaction energy by measuring the size of the trapped gas, we have studied collective excitation modes, and we have observed the pairing gap. Our observations provide strong evidence for superfluidity in the strongly interacting Fermi gas.Comment: Proceedings of ICAP-2004 (Rio de Janeiro). Review on Innsbruck BEC-BCS crossover experiments with updated Feshbach resonance positio

    Performance and evaluation of two liquid-metal pumps for sodium-potassium service

    Get PDF
    Performance tests on liquid metal pumps for sodium potassium loop

    Finite-Temperature Collective Dynamics of a Fermi Gas in the BEC-BCS Crossover

    Full text link
    We report on experimental studies on the collective behavior of a strongly interacting Fermi gas with tunable interactions and variable temperature. A scissors mode excitation in an elliptical trap is used to characterize the dynamics of the quantum gas in terms of hydrodynamic or near-collisionless behavior. We obtain a crossover phase diagram for collisional properties, showing a large region where a non-superfluid strongly interacting gas shows hydrodynamic behavior. In a narrow interaction regime on the BCS side of the crossover, we find a novel temperature-dependent damping peak, suggesting a relation to the superfluid phase transition
    corecore