1,123 research outputs found
Moving an incisor across the midline: A treatment alternative in an adolescent patient
A 13-year-old sought treatment for a severely compromised maxillary left central incisor and an impacted fully developed left canine. Extraction of both teeth became necessary. As the key component of the revised comprehensive treatment plan, the right maxillary central incisor was moved into the position of the left central incisor. All other maxillary teeth were moved mesially to close any gaps. Active orthodontic treatment was completed after 34 months. Frenectomy, minor periodontal surgeries, and bonded lingual retainers were used to improve aesthetics and stabilize the tooth positions. The patient was pleased with the treatment outcome. Cone-beam computed tomography provided evidence that the tooth movement was accompanied by a deviation of the most anterior portion of the median palatine suture. This observation may make relapse more likely if long-term retention cannot be ensured. Root resorption was not observed as a consequence of the major tooth movement. (Am J Orthod Dentofacial Orthop 2011;139:533-43
Bonding with Self-etching Primers – Pumice or Pre-etch? An \u3cem\u3ein vitro\u3c/em\u3e Study
The purpose of this study was to compare the shear bond strengths (SBSs) of orthodontic brackets bonded with self-etching primer (SEP) using different enamel surface preparations. A two-by-two factorial study design was used. Sixty human premolars were harvested, cleaned, and randomly assigned to four groups (n = 15 per group). Teeth were bathed in saliva for 48 hours to form a pellicle. Treatments were assigned as follows: group 1 was pumiced for 10 seconds and pre-etched for 5 seconds with 37 per cent phosphoric acid before bonding with SEP (Transbond Plus). Group 2 was pumiced for 10 seconds before bonding. Group 3 was pre-etched for 5 seconds before bonding. Group 4 had no mechanical or chemical preparation before bonding. All teeth were stored in distilled water for 24 hours at 37°C before debonding. The SBS values and adhesive remnant index (ARI) score were recorded. The SBS values (±1 SD) for groups 1–4 were 22.9 ± 6.6, 16.1 ± 7.3, 36.2 ± 8.2, and 13.1 ± 10.1 MPa, respectively. Two-way analysis of variance and subsequent contrasts showed statistically significant differences among treatment groups. ARI scores indicated the majority of adhesive remained on the bracket for all four groups. Pre-etching the bonding surface for 5 seconds with 37 per cent phosphoric acid, instead of pumicing, when using SEPs to bond orthodontic brackets, resulted in greater SBSs
Bonding with Self-etching Primers – Pumice or Pre-etch? An \u3cem\u3ein vitro\u3c/em\u3e Study
The purpose of this study was to compare the shear bond strengths (SBSs) of orthodontic brackets bonded with self-etching primer (SEP) using different enamel surface preparations. A two-by-two factorial study design was used. Sixty human premolars were harvested, cleaned, and randomly assigned to four groups (n = 15 per group). Teeth were bathed in saliva for 48 hours to form a pellicle. Treatments were assigned as follows: group 1 was pumiced for 10 seconds and pre-etched for 5 seconds with 37 per cent phosphoric acid before bonding with SEP (Transbond Plus). Group 2 was pumiced for 10 seconds before bonding. Group 3 was pre-etched for 5 seconds before bonding. Group 4 had no mechanical or chemical preparation before bonding. All teeth were stored in distilled water for 24 hours at 37°C before debonding. The SBS values and adhesive remnant index (ARI) score were recorded. The SBS values (±1 SD) for groups 1–4 were 22.9 ± 6.6, 16.1 ± 7.3, 36.2 ± 8.2, and 13.1 ± 10.1 MPa, respectively. Two-way analysis of variance and subsequent contrasts showed statistically significant differences among treatment groups. ARI scores indicated the majority of adhesive remained on the bracket for all four groups. Pre-etching the bonding surface for 5 seconds with 37 per cent phosphoric acid, instead of pumicing, when using SEPs to bond orthodontic brackets, resulted in greater SBSs
The new heliospheric magnetic field: Observational implications
A summary of the new model of the heliospheric magnetic field and its observational implications is presented. We first introduce a global model for the steady-state configuration in the low corona and discuss solar and heliospheric implications of the resulting field configuration. Finally, we compare the effects of this model with random transport of field-lines due to reconnection on the solar surface and to the dynamic turbulent transport of magnetic field-lines. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87723/2/87_1.pd
Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms
Cardiac hypertrophy is an adaptive response that normalizes wall stress and compensates for increased workload. It is accompanied by distinct qualitative and quantitative changes in the expression of protein isoforms concerning contractility, intracellular Ca2+-homeostasis and metabolism. Changes in the myosin subunit isoform expression improves contractility by an increase in force generation at a given Ca2+-concentration (increased Ca2+-sensitivity) and by improving the economy of the chemo-mechanical transduction process per amount of utilised ATP (increased duty ratio). In the human atrium this is achieved by partial replacement of the endogenous fast myosin by the ventricular slow-type heavy and light chains. In the hypertrophic human ventricle the slow-type β-myosin heavy chains remain unchanged, but the ectopic expression of the atrial myosin essential light chain (ALC1) partially replaces the endogenous ventricular isoform (VLC1). The ventricular contractile apparatus with myosin containing ALC1 is characterised by faster cross-bridge kinetics, a higher Ca2+-sensitivity of force generation and an increased duty ratio. The mechanism for cross-bridge modulation relies on the extended Ala-Pro-rich N-terminus of the essential light chains of which the first eleven residues interact with the C-terminus of actin. A change in charge in this region between ALC1 and VLC1 explains their functional difference. The intracellular Ca2+-handling may be impaired in heart failure, resulting in either higher or lower cytosolic Ca2+-levels. Thus the state of the cardiomyocyte determines whether this hypertrophic adaptation remains beneficial or becomes detrimental during failure. Also discussed are the effects on contractility of long-term changes in isoform expression of other sarcomeric proteins. Positive and negative modulation of contractility by short-term phosphorylation reactions at multiple sites in the myosin regulatory light chain, troponin-I, troponin-T, α-tropomyosin and myosin binding protein-C are considered in detai
The use of iron charge state changes as a tracer for solar wind entry and energization within the magnetosphere
International audienceThe variation of the charge state of iron [Fe] ions is used to trace volume elements of plasma in the solar wind into the magnetosphere and to determine the time scales associated with the entry into and the action of the magnetospheric energization process working on these plasmas. On 2?3 May 1998 the Advanced Composition Explorer (ACE) spacecraft located at the L1 libration point observed a series of changes to the average charge state of the element Fe in the solar wind plasma reflecting variation in the coronal temperature of their original source. Over the period of these two days the average Fe charge state was observed to vary from + 15 to + 6 both at the Polar satellite in the high latitude dayside magnetosphere and at ACE. During a period of southward IMF the observations at Polar inside the magnetosphere of the same Fe charge state were simultaneous with those at ACE delayed by the measured convection speed of the solar wind to the subsolar magnetopause. Comparing the phase space density as a function of energy at both ACE and Polar has indicated that significant energization of the plasma occurred on very rapid time scales. Energization at constant phase space density by a factor of 5 to 10 was observed over a range of energy from a few keV to about 1 MeV. For a detector with a fixed energy threshold in the range from 10 keV to a few hundred keV this observed energization will appear as a factor of ~103 increase in its counting rate. Polar observations of very energetic O+ ions at the same time indicate that this energization process must be occurring in the high latitude cusp region inside the magnetosphere and that it is capable of energizing ionospheric ions at the same time
The transition from slow to fast solar wind: Charge state composition and electron observations
The charge state composition is a very sensitive measure for the electron properties at around 2 solar radii heliocentric distance. Even though the basic principle of the charge-state freeze-in process is rather well understood, it is not clear how the non-thermal properties of the electron distribution functions influence the frozen-in charge states. The obvious question to ask, then, is whether in situ electrons exhibit the same temporal variations as the charge state composition. Using SWICS/ACE and 3DP/WIND data, we find that the core electrons are dominated by local effects like compression and have no memory of their coronal origin. Supra-thermal electrons, on the other hand, show a clear correlation with the charge state data. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87725/2/495_1.pd
A differentiable characterization of local contractions on Banach spaces
This note provides a differentiable characterization of local contractions on an arbitrary Banach space. As a corollary, a refinement to Ostrowski’s sufficient condition for local convergence in finite spaces is obtained, which applies to many models, e.g. in economics, ecology or game theory, where one has an interest in fixed point iterations and local stability of discrete dynamic processes. We show that for the local contraction property to hold, continuity of the derivative at the fixed point is indispensable
Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation.
Increased sleep time and intensity quantified as low-frequency brain electrical activity after sleep loss demonstrate that sleep need is homeostatically regulated, yet the underlying molecular mechanisms remain elusive. We here demonstrate that metabotropic glutamate receptors of subtype 5 (mGluR5) contribute to the molecular machinery governing sleep-wake homeostasis. Using positron emission tomography, magnetic resonance spectroscopy, and electroencephalography in humans, we find that increased mGluR5 availability after sleep loss tightly correlates with behavioral and electroencephalographic biomarkers of elevated sleep need. These changes are associated with altered cortical myo-inositol and glycine levels, suggesting sleep loss-induced modifications downstream of mGluR5 signaling. Knock-out mice without functional mGluR5 exhibit severe dysregulation of sleep-wake homeostasis, including lack of recovery sleep and impaired behavioral adjustment to a novel task after sleep deprivation. The data suggest that mGluR5 contribute to the brain's coping mechanisms with sleep deprivation and point to a novel target to improve disturbed wakefulness and sleep
- …
