1,045 research outputs found

    The Einstein static universe with torsion and the sign problem of the cosmological constant

    Full text link
    In the field equations of Einstein-Cartan theory with cosmological constant a static spherically symmetric perfect fluid with spin density satisfying the Weyssenhoff restriction is considered. This serves as a rough model of space filled with (fermionic) dark matter. From this the Einstein static universe with constant torsion is constructed, generalising the Einstein Cosmos to Einstein-Cartan theory. The interplay between torsion and the cosmological constant is discussed. A possible way out of the cosmological constant's sign problem is suggested.Comment: 8 pages, LaTeX; minor layout changes, typos corrected, one new equation, new reference [5], completed reference [13], two references adde

    Test Matter in a Spacetime with Nonmetricity

    Full text link
    Examples in which spacetime might become non-Riemannian appear above Planck energies in string theory or, in the very early universe, in the inflationary model. The simplest such geometry is metric-affine geometry, in which {\it nonmetricity} appears as a field strength, side by side with curvature and torsion. In matter, the shear and dilation currents couple to nonmetricity, and they are its sources. After reviewing the equations of motion and the Noether identities, we study two recent vacuum solutions of the metric-affine gauge theory of gravity. We then use the values of the nonmetricity in these solutions to study the motion of the appropriate test-matter. As a Regge-trajectory like hadronic excitation band, the test matter is endowed with shear degrees of freedom and described by a world spinor.Comment: 14 pages, file in late

    PP-waves with torsion and metric-affine gravity

    Full text link
    A classical pp-wave is a 4-dimensional Lorentzian spacetime which admits a nonvanishing parallel spinor field; here the connection is assumed to be Levi-Civita. We generalise this definition to metric compatible spacetimes with torsion and describe basic properties of such spacetimes. We use our generalised pp-waves for constructing new explicit vacuum solutions of quadratic metric-affine gravity.Comment: 17 pages, LaTeX2

    An assessment of Evans' unified field theory I

    Get PDF
    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe theta and a (metric compatible) Lorentz connection Gamma. These two potentials yield the field strengths torsion T and curvature R. Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe theta to be proportional to four extended electromagnetic potentials A; these are assumed to encompass the conventional Maxwellian potential in a suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans' ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.Comment: 39 pages of latex, modified because of referee report, mistakes and typos removed, partly reformulated, taken care of M.W.Evans' rebutta

    An assessment of Evans' unified field theory II

    Get PDF
    Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. In an accompanying paper I, we analyzed this theory and summarized it in nine equations. We now propose a variational principle for Evans' theory and show that it yields two field equations. The second field equation is algebraic in the torsion and we can resolve it with respect to the torsion. It turns out that for all physical cases the torsion vanishes and the first field equation, together with Evans' unified field theory, collapses to an ordinary Einstein equation.Comment: 11 pages of late

    Gravitational contribution to fermion masses

    Full text link
    In the context of a nonlinear gauge theory of the Poincar\'e group, we show that covariant derivatives of Dirac fields include a coupling to the translational connections, manifesting itself in the matter action as a universal background mass contribution to fermions.Comment: revtex4, 9 pages, no figures, to be published in Eur.Phys.J.C, 200

    The Einstein 3-form G_a and its equivalent 1-form L_a in Riemann-Cartan space

    Get PDF
    The definition of the Einstein 3-form G_a is motivated by means of the contracted 2nd Bianchi identity. This definition involves at first the complete curvature 2-form. The 1-form L_a is defined via G_a = L^b \wedge #(o_b \wedge o_a). Here # denotes the Hodge-star, o_a the coframe, and \wedge the exterior product. The L_a is equivalent to the Einstein 3-form and represents a certain contraction of the curvature 2-form. A variational formula of Salgado on quadratic invariants of the L_a 1-form is discussed, generalized, and put into proper perspective.Comment: LaTeX, 13 Pages. To appear in Gen. Rel. Gra

    Strings in gravity with torsion

    Get PDF
    A theory of gravitation in 4D is presented with strings used in the material action in U4U_4 spacetime. It is shown that the string naturally gives rise to torsion. It is also shown that the equation of motion a string follows from the Bianchi identity, gives the identical result as the Noether conservation laws, and follows a geodesic only in the lowest order approximation. In addition, the conservation laws show that strings naturally have spin, which arises not from their motion but from their one dimensional structure.Comment: 16 page
    corecore