3,098 research outputs found

    Four-Majorana qubit with charge readout: dynamics and decoherence

    Full text link
    We present a theoretical analysis of a Majorana-based qubit consisting of two topological superconducting islands connected via a Josephson junction. The qubit is operated by electrostatic gates which control the coupling of two of the four Majorana zero modes. At the end of the operation, readout is performed in the charge basis. Even though the operations are not topologically protected, the proposed experiment can potentially shed light on the coherence of the parity degree of freedom in Majorana devices and serve as a first step towards topological Majorana qubits. We discuss in detail the charge-stability diagram and its use for characterizing the parameters of the devices, including the overlap of the Majorana edge states. We describe the multi-level spectral properties of the system and present a detailed study of its controlled coherent oscillations, as well as decoherence resulting from coupling to a non-Markovian environment. In particular, we study a gate-controlled protocol where conversion between Coulomb-blockade and transmon regimes generates coherent oscillations of the qubit state due to the overlap of Majorana modes. We show that, in addition to fluctuations of the Majorana coupling, considerable measurement errors may be accumulated during the conversion intervals when electrostatic fluctuations in the superconducting islands are present. These results are also relevant for several proposed implementations of topological qubits which rely on readout based on charge detection

    Sub-nanometer free electrons with topological charge

    Full text link
    The holographic mask technique is used to create freely moving electrons with quantized angular momentum. With electron optical elements they can be focused to vortices with diameters below the nanometer range. The understanding of these vortex beams is important for many applications. Here we present a theory of focused free electron vortices. The agreement with experimental data is excellent. As an immediate application, fundamental experimental parameters like spherical aberration and partial coherence are determined.Comment: 4 pages, 5 figure

    Solid state image sensor research

    Get PDF
    Solid state image sensing devices developed for meteorological satellite application

    On the homomorphism order of labeled posets

    Get PDF
    Partially ordered sets labeled with k labels (k-posets) and their homomorphisms are examined. We give a representation of directed graphs by k-posets; this provides a new proof of the universality of the homomorphism order of k-posets. This universal order is a distributive lattice. We investigate some other properties, namely the infinite distributivity, the computation of infinite suprema and infima, and the complexity of certain decision problems involving the homomorphism order of k-posets. Sublattices are also examined.Comment: 14 page

    Perampanel inhibition of AMPA receptor currents in cultured hippocampal neurons.

    Get PDF
    Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM), concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M-1 s-1 and 0.58 s-1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM) was similar at all kainate concentrations (3-100 µM), demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics

    Algebraic Properties of Valued Constraint Satisfaction Problem

    Full text link
    The paper presents an algebraic framework for optimization problems expressible as Valued Constraint Satisfaction Problems. Our results generalize the algebraic framework for the decision version (CSPs) provided by Bulatov et al. [SICOMP 2005]. We introduce the notions of weighted algebras and varieties and use the Galois connection due to Cohen et al. [SICOMP 2013] to link VCSP languages to weighted algebras. We show that the difficulty of VCSP depends only on the weighted variety generated by the associated weighted algebra. Paralleling the results for CSPs we exhibit a reduction to cores and rigid cores which allows us to focus on idempotent weighted varieties. Further, we propose an analogue of the Algebraic CSP Dichotomy Conjecture; prove the hardness direction and verify that it agrees with known results for VCSPs on two-element sets [Cohen et al. 2006], finite-valued VCSPs [Thapper and Zivny 2013] and conservative VCSPs [Kolmogorov and Zivny 2013].Comment: arXiv admin note: text overlap with arXiv:1207.6692 by other author

    Lower Bounds for the Graph Homomorphism Problem

    Full text link
    The graph homomorphism problem (HOM) asks whether the vertices of a given nn-vertex graph GG can be mapped to the vertices of a given hh-vertex graph HH such that each edge of GG is mapped to an edge of HH. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 22-CSP problem. In this paper, we prove several lower bound for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound 2Ω(nloghloglogh)2^{\Omega\left( \frac{n \log h}{\log \log h}\right)}. This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound 2O(nlogh)2^{{\mathcal O}(n\log{h})} is almost asymptotically tight. We also investigate what properties of graphs GG and HH make it difficult to solve HOM(G,H)(G,H). An easy observation is that an O(hn){\mathcal O}(h^n) upper bound can be improved to O(hvc(G)){\mathcal O}(h^{\operatorname{vc}(G)}) where vc(G)\operatorname{vc}(G) is the minimum size of a vertex cover of GG. The second lower bound hΩ(vc(G))h^{\Omega(\operatorname{vc}(G))} shows that the upper bound is asymptotically tight. As to the properties of the "right-hand side" graph HH, it is known that HOM(G,H)(G,H) can be solved in time (f(Δ(H)))n(f(\Delta(H)))^n and (f(tw(H)))n(f(\operatorname{tw}(H)))^n where Δ(H)\Delta(H) is the maximum degree of HH and tw(H)\operatorname{tw}(H) is the treewidth of HH. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number χ(H)\chi(H) does not exceed tw(H)\operatorname{tw}(H) and Δ(H)+1\Delta(H)+1, it is natural to ask whether similar upper bounds with respect to χ(H)\chi(H) can be obtained. We provide a negative answer to this question by establishing a lower bound (f(χ(H)))n(f(\chi(H)))^n for any function ff. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.Comment: 19 page

    On the reduction of the CSP dichotomy conjecture to digraphs

    Full text link
    It is well known that the constraint satisfaction problem over general relational structures can be reduced in polynomial time to digraphs. We present a simple variant of such a reduction and use it to show that the algebraic dichotomy conjecture is equivalent to its restriction to digraphs and that the polynomial reduction can be made in logspace. We also show that our reduction preserves the bounded width property, i.e., solvability by local consistency methods. We discuss further algorithmic properties that are preserved and related open problems.Comment: 34 pages. Article is to appear in CP2013. This version includes two appendices with proofs of claims omitted from the main articl
    corecore