3,745 research outputs found

    Cosmic Shear Systematics: Software-Hardware Balance

    Full text link
    Cosmic shear measurements rely on our ability to measure and correct the Point Spread Function (PSF) of the observations. This PSF is measured using stars in the field, which give a noisy measure at random points in the field. Using Wiener filtering, we show how errors in this PSF correction process propagate into shear power spectrum errors. This allows us to test future space-based missions, such as Euclid or JDEM, thereby allowing us to set clear engineering specifications on PSF variability. For ground-based surveys, where the variability of the PSF is dominated by the environment, we briefly discuss how our approach can also be used to study the potential of mitigation techniques such as correlating galaxy shapes in different exposures. To illustrate our approach we show that for a Euclid-like survey to be statistics limited, an initial pre-correction PSF ellipticity power spectrum, with a power-law slope of -3 must have an amplitude at l =1000 of less than 2 x 10^{-13}. This is 1500 times smaller than the typical lensing signal at this scale. We also find that the power spectrum of PSF size \dR^2) at this scale must be below 2 x 10^{-12}. Public code available as part of iCosmo at http://www.icosmo.orgComment: 5 pages, 3 figures. Submitted to MNRA

    Optimal PSF modeling for weak lensing: complexity and sparsity

    Full text link
    We investigate the impact of point spread function (PSF) fitting errors on cosmic shear measurements using the concepts of complexity and sparsity. Complexity, introduced in a previous paper, characterizes the number of degrees of freedom of the PSF. For instance, fitting an underlying PSF with a model with low complexity will lead to small statistical errors on the model parameters, however these parameters could suffer from large biases. Alternatively, fitting with a large number of parameters will tend to reduce biases at the expense of statistical errors. We perform an optimisation of scatters and biases by studying the mean squared error of a PSF model. We also characterize a model sparsity, which describes how efficiently the model is able to represent the underlying PSF using a limited number of free parameters. We present the general case and illustrate it for a realistic example of PSF fitted with shapelet basis sets. We derive the relation between complexity and sparsity of the PSF model, signal-to-noise ratio of stars and systematic errors on cosmological parameters. With the constraint of maintaining the systematics below the statistical uncertainties, this lead to a relation between the required number of stars to calibrate the PSF and the sparsity. We discuss the impact of our results for current and future cosmic shear surveys. In the typical case where the biases can be represented as a power law of the complexity, we show that current weak lensing surveys can calibrate the PSF with few stars, while future surveys will require hard constraints on the sparsity in order to calibrate the PSF with 50 stars.Comment: accepted by A&A, 9 pages, 6 figure

    Microlensing towards M31 with MDM data

    Full text link
    We report the final analysis of a search for microlensing events in the direction of the Andromeda galaxy, which aimed to probe the MACHO composition of the M31 halo using data collected during the 1998-99 observational campaign at the MDM observatory. In a previous paper, we discussed the results from a first set of observations. Here, we deal with the complete data set, and we take advantage of some INT observations in the 1999-2000 seasons. This merging of data sets taken by different instruments turns out to be very useful, the study of the longer baseline available allowing us to test the uniqueness characteristic of microlensing events. As a result, all the candidate microlensing events previously reported turn out to be variable stars. We further discuss a selection based on different criteria, aimed at the detection of short--duration events. We find three candidates whose positions are consistent with self--lensing events, although the available data do not allow us to conclude unambiguously that they are due to microlensing.Comment: Accepted for publication in Astronomy and Astrophysic

    What does a binary black hole merger look like?

    Get PDF
    We present a method of calculating the strong-field gravitational lensing caused by many analytic and numerical spacetimes. We use this procedure to calculate the distortion caused by isolated black holes and by numerically evolved black hole binaries. We produce both demonstrative images illustrating details of the spatial distortion and realistic images of collections of stars taking both lensing amplification and redshift into account. On large scales the lensing from inspiraling binaries resembles that of single black holes, but on small scales the resulting images show complex and in some cases self-similar structure across different angular scales.Comment: 10 pages, 12 figures. Supplementary images and movies can be found at http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensin

    First microlensing candidate towards M31 from the Nainital Microlensing Survey

    Get PDF
    We report our first microlensing candidate NMS-E1 towards M31 from the data accumulated during the four years of Nainital Microlensing Survey. Cousin R and I band observations of ~13'x13' field in the direction of M31 have been carried out since 1998 and data is analysed using the pixel technique proposed by the AGAPE collaboration. NMS-E1 lies in the disk of M31 at \alpha = 0:43:33.3 and \delta = +41:06:44, about 15.5 arcmin to the South-East direction of the center of M31. The degenerate Paczy\'{n}ski fit gives a half intensity duration of ~59 days. The photometric analysis of the candidate shows that it reached R~20.1 mag at the time of maximum brightness and the colour of the source star was estimated to be (R-I)_0 ~ 1.1 mag. The microlensing candidate is blended by red variable stars; consequently the light curves do not strictly follow the characteristic Paczy\'{n}ski shape and achromatic nature. However its long period monitoring and similar behaviour in R and I bands supports its microlensing nature.Comment: no changes except typos corrected, to appear in A&

    Cosmic shear systematics: software-hardware balance

    Get PDF
    Cosmic shear measurements rely on our ability to measure and correct the point spread function (PSF) of the observations. This PSF is measured using stars in the field, which give a noisy measure at random points in the field. Using Wiener filtering, we show how errors in this PSF correction process propagate into shear power spectrum errors. This allows us to test future space-based missions, such as Euclid or the Joint Dark Energy Mission, thereby allowing us to set clear engineering specifications on PSF variability. For ground-based surveys, where the variability of the PSF is dominated by the environment, we briefly discuss how our approach can also be used to study the potential of mitigation techniques such as correlating galaxy shapes in different exposures. To illustrate our approach we show that for a Euclid-like survey to be statistics limited, an initial pre-correction PSF ellipticity power spectrum, with a power-law slope of −3, must have an amplitude of less than at ℓ= 1000. This is 200 times smaller than the typical lensing signal at this scale. We also find that the power spectrum of the PSF size () at this scale must be below . The public code is available as part of iCosmo at http://www.icosmo.or

    PSF calibration requirements for dark energy from cosmic shear

    Full text link
    The control of systematic effects when measuring galaxy shapes is one of the main challenges for cosmic shear analyses. In this context, we study the fundamental limitations on shear accuracy due to the measurement of the Point Spread Function (PSF) from the finite number of stars. In order to do that, we translate the accuracy required for cosmological parameter estimation to the minimum number of stars over which the PSF must be calibrated. We first derive our results analytically in the case of infinitely small pixels (i.e. infinitely high resolution). Then image simulations are used to validate these results and investigate the effect of finite pixel size in the case of an elliptical gaussian PSF. Our results are expressed in terms of the minimum number of stars required to calibrate the PSF in order to ensure that systematic errors are smaller than statistical errors when estimating the cosmological parameters. On scales smaller than the area containing this minimum number of stars, there is not enough information to model the PSF. In the case of an elliptical gaussian PSF and in the absence of dithering, 2 pixels per PSF Full Width at Half Maximum (FWHM) implies a 20% increase of the minimum number of stars compared to the ideal case of infinitely small pixels; 0.9 pixels per PSF FWHM implies a factor 100 increase. In the case of a good resolution and a typical Signal-to-Noise Ratio distribution of stars, we find that current surveys need the PSF to be calibrated over a few stars, which may explain residual systematics on scales smaller than a few arcmins. Future all-sky cosmic shear surveys require the PSF to be calibrated over a region containing about 50 stars.Comment: 13 pages, 4 figures, accepted by A&
    corecore