758 research outputs found
One Thing After Another: Why the Passage of Time Is Not an Illusion
Does time seem to pass, even though it doesn’t, really? Many philosophers think the answer is ‘Yes’—at least when ‘time’s passing’ is understood in a particular way. They take time’s passing to be a process by which each time in turn acquires a special status, such as the status of being the only time that exists, or being the only time that is present. This chapter suggests that, on the contrary, all we perceive is temporal succession, one thing after another, a notion to which modern physics is not inhospitable. The contents of perception are best described in terms of ‘before’ and ‘after’, rather than ‘past’, ‘present, and ‘future’
Spherical Slepian functions and the polar gap in geodesy
The estimation of potential fields such as the gravitational or magnetic
potential at the surface of a spherical planet from noisy observations taken at
an altitude over an incomplete portion of the globe is a classic example of an
ill-posed inverse problem. Here we show that the geodetic estimation problem
has deep-seated connections to Slepian's spatiospectral localization problem on
the sphere, which amounts to finding bandlimited spherical functions whose
energy is optimally concentrated in some closed portion of the unit sphere.
This allows us to formulate an alternative solution to the traditional damped
least-squares spherical harmonic approach in geodesy, whereby the source field
is now expanded in a truncated Slepian function basis set. We discuss the
relative performance of both methods with regard to standard statistical
measures as bias, variance and mean-square error, and pay special attention to
the algorithmic efficiency of computing the Slepian functions on the region
complementary to the axisymmetric polar gap characteristic of satellite
surveys. The ease, speed, and accuracy of this new method makes the use of
spherical Slepian functions in earth and planetary geodesy practical.Comment: 14 figures, submitted to the Geophysical Journal Internationa
Generative discriminative models for multivariate inference and statistical mapping in medical imaging
This paper presents a general framework for obtaining interpretable
multivariate discriminative models that allow efficient statistical inference
for neuroimage analysis. The framework, termed generative discriminative
machine (GDM), augments discriminative models with a generative regularization
term. We demonstrate that the proposed formulation can be optimized in closed
form and in dual space, allowing efficient computation for high dimensional
neuroimaging datasets. Furthermore, we provide an analytic estimation of the
null distribution of the model parameters, which enables efficient statistical
inference and p-value computation without the need for permutation testing. We
compared the proposed method with both purely generative and discriminative
learning methods in two large structural magnetic resonance imaging (sMRI)
datasets of Alzheimer's disease (AD) (n=415) and Schizophrenia (n=853). Using
the AD dataset, we demonstrated the ability of GDM to robustly handle
confounding variations. Using Schizophrenia dataset, we demonstrated the
ability of GDM to handle multi-site studies. Taken together, the results
underline the potential of the proposed approach for neuroimaging analyses.Comment: To appear in MICCAI 2018 proceeding
Differential expression analysis with global network adjustment
<p>Background: Large-scale chromosomal deletions or other non-specific perturbations of the transcriptome can alter the expression of hundreds or thousands of genes, and it is of biological interest to understand which genes are most profoundly affected. We present a method for predicting a gene’s expression as a function of other genes thereby accounting for the effect of transcriptional regulation that confounds the identification of genes differentially expressed relative to a regulatory network. The challenge in constructing such models is that the number of possible regulator transcripts within a global network is on the order of thousands, and the number of biological samples is typically on the order of 10. Nevertheless, there are large gene expression databases that can be used to construct networks that could be helpful in modeling transcriptional regulation in smaller experiments.</p>
<p>Results: We demonstrate a type of penalized regression model that can be estimated from large gene expression databases, and then applied to smaller experiments. The ridge parameter is selected by minimizing the cross-validation error of the predictions in the independent out-sample. This tends to increase the model stability and leads to a much greater degree of parameter shrinkage, but the resulting biased estimation is mitigated by a second round of regression. Nevertheless, the proposed computationally efficient “over-shrinkage” method outperforms previously used LASSO-based techniques. In two independent datasets, we find that the median proportion of explained variability in expression is approximately 25%, and this results in a substantial increase in the signal-to-noise ratio allowing more powerful inferences on differential gene expression leading to biologically intuitive findings. We also show that a large proportion of gene dependencies are conditional on the biological state, which would be impossible with standard differential expression methods.</p>
<p>Conclusions: By adjusting for the effects of the global network on individual genes, both the sensitivity and reliability of differential expression measures are greatly improved.</p>
Case study in six sigma methadology : manufacturing quality improvement and guidence for managers
This article discusses the successful implementation of Six Sigma methodology in a high precision and critical process in the manufacture of automotive products. The Six Sigma define–measure–analyse–improve–control approach resulted in a reduction of tolerance-related problems and improved the first pass yield from 85% to 99.4%. Data were collected on all possible causes and regression analysis, hypothesis testing, Taguchi methods, classification and regression tree, etc. were used to analyse the data and draw conclusions. Implementation of Six Sigma methodology had a significant financial impact on the profitability of the company. An approximate saving of US$70,000 per annum was reported, which is in addition to the customer-facing benefits of improved quality on returns and sales. The project also had the benefit of allowing the company to learn useful messages that will guide future Six Sigma activities
Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization
We address the inverse problem of cosmic large-scale structure reconstruction
from a Bayesian perspective. For a linear data model, a number of known and
novel reconstruction schemes, which differ in terms of the underlying signal
prior, data likelihood, and numerical inverse extra-regularization schemes are
derived and classified. The Bayesian methodology presented in this paper tries
to unify and extend the following methods: Wiener-filtering, Tikhonov
regularization, Ridge regression, Maximum Entropy, and inverse regularization
techniques. The inverse techniques considered here are the asymptotic
regularization, the Jacobi, Steepest Descent, Newton-Raphson,
Landweber-Fridman, and both linear and non-linear Krylov methods based on
Fletcher-Reeves, Polak-Ribiere, and Hestenes-Stiefel Conjugate Gradients. The
structures of the up-to-date highest-performing algorithms are presented, based
on an operator scheme, which permits one to exploit the power of fast Fourier
transforms. Using such an implementation of the generalized Wiener-filter in
the novel ARGO-software package, the different numerical schemes are
benchmarked with 1-, 2-, and 3-dimensional problems including structured white
and Poissonian noise, data windowing and blurring effects. A novel numerical
Krylov scheme is shown to be superior in terms of performance and fidelity.
These fast inverse methods ultimately will enable the application of sampling
techniques to explore complex joint posterior distributions. We outline how the
space of the dark-matter density field, the peculiar velocity field, and the
power spectrum can jointly be investigated by a Gibbs-sampling process. Such a
method can be applied for the redshift distortions correction of the observed
galaxies and for time-reversal reconstructions of the initial density field.Comment: 40 pages, 11 figure
Selection of tuning parameters in bridge regression models via Bayesian information criterion
We consider the bridge linear regression modeling, which can produce a sparse
or non-sparse model. A crucial point in the model building process is the
selection of adjusted parameters including a regularization parameter and a
tuning parameter in bridge regression models. The choice of the adjusted
parameters can be viewed as a model selection and evaluation problem. We
propose a model selection criterion for evaluating bridge regression models in
terms of Bayesian approach. This selection criterion enables us to select the
adjusted parameters objectively. We investigate the effectiveness of our
proposed modeling strategy through some numerical examples.Comment: 20 pages, 5 figure
Quality management in heavy duty manufacturing industry: TQM vs. Six Sigma
‘Is TQM a management fad?’ This question has been extensively documented in the quality management literature; and will be tackled in this research though a critical literature review on the area. ‘TQM versus Six-Sigma’ debate, which has also been a fundamental challenge in this research filed, is addressed by a thematic and chronological review on the peer papers. To evaluate this challenge in practice, a primary research in heavy duty machinery production industry have been conducted using a case-study on, J C Bamford Excavators Ltd (JCB), the largest European construction machinery producer. The result highlights that TQM is a natural foundation to build up Six-Sigma upon; and not surprisingly the quality yield in a TQM approach complemented by Six-sigma is far higher and more stable than when TQM with no Six-Sigma focus is being put in place; thus presenting the overall finding that TQM and Six Sigma are compliments, not substitutes. The study will be concluded with an overview on quality management approaches in the heavy duty manufacturing industry to highlight the way forward for the industry
Classification tools for carotenoid content estimation in Manihot esculenta via metabolomics and machine learning
Cassava genotypes (Manihot esculenta Crantz) with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The color variability of cassava roots, which can vary from white to red, is related to the presence of several carotenoid pigments. The present study has shown how CIELAB color measurement on cassava roots tissue can be used as a non-destructive and very fast technique to quantify the levels of carotenoids in cassava root samples, avoiding the use of more expensive analytical techniques for compound quantification, such as UV-visible spectrophotometry and the HPLC. For this, we used machine learning techniques, associating the colorimetric data (CIELAB) with the data obtained by UV-vis and HPLC, to obtain models of prediction of carotenoids for this type of biomass. Best values of R2 (above 90%) were observed for the predictive variable TCC determined by UV-vis spectrophotometry. When we tested the machine learning models using the CIELAB values as inputs, for the total carotenoids contents quantified by HPLC, the Partial Least Squares (PLS), Support Vector Machines, and Elastic Net models presented the best values of R2 (above 40%) and Root-Mean-Square Error (RMSE). For the carotenoid quantification by UV-vis spectrophotometry, R2 (around 60%) and RMSE values (around 6.5) are more satisfactory. Ridge regression and Elastic Network showed the best results. It can be concluded that the use colorimetric technique (CIELAB) associated with UV-vis/HPLC and statistical techniques of prognostic analysis through machine learning can predict the content of total carotenoids in these samples, with good precision and accuracy.CAPES -Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(407323/2013-9)info:eu-repo/semantics/publishedVersio
On the combination of omics data for prediction of binary outcomes
Enrichment of predictive models with new biomolecular markers is an important
task in high-dimensional omic applications. Increasingly, clinical studies
include several sets of such omics markers available for each patient,
measuring different levels of biological variation. As a result, one of the
main challenges in predictive research is the integration of different sources
of omic biomarkers for the prediction of health traits. We review several
approaches for the combination of omic markers in the context of binary outcome
prediction, all based on double cross-validation and regularized regression
models. We evaluate their performance in terms of calibration and
discrimination and we compare their performance with respect to single-omic
source predictions. We illustrate the methods through the analysis of two real
datasets. On the one hand, we consider the combination of two fractions of
proteomic mass spectrometry for the calibration of a diagnostic rule for the
detection of early-stage breast cancer. On the other hand, we consider
transcriptomics and metabolomics as predictors of obesity using data from the
Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome
(DILGOM) study, a population-based cohort, from Finland
- …
