379 research outputs found
Stability constants for some divalent metal ion/crown ether complexes in methanol determined by polarography and conductometry
Stability constants in methanol at 25.0°C were evaluated for the complexes of the divalent cations Ca2+, Ni2+, Zn2+, Pb2+, Mg2+, Co2+ and Cu2+ with the macrocyclic polyethers 15-crown-5 (15C5), 18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6) and dibenzo-24-crown-8 (DB24C8). The log K values of the 1:1 complexes were generally in the range 2.1–4.2, which is low in comparison to the values of the corresponding crown ether/alkali metal ion complexes. M2L complexes were observed for the systems Pb2+/18C6, Pb2+/DC18C6, Ca2+/DC18C6 and Cu2+/D18C6, whereas ML2 complexes were found for Ca2+/18C6 and Cu2+/18C6. Within the series of complexes studied, there was no clear relationship between cation diameter and hole size
Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils
Measuring soil water potentials is crucial to characterize vadose zone processes. Conventional tensiometers only measure until approximately −0.09 MPa, and indirect methods may suffer from the non-uniqueness in the relationship between matric potential and measured properties. Recently developed polymer tensiometers (POTs) are able to directly measure soil matric potentials until the theoretical wilting point (−1.6 MPa). By minimizing the volume of polymer solution inside the POT while maximizing the ceramic area in contact with that polymer solution, response times drop to acceptable ranges for laboratory and field conditions. Contact with the soil is drastically improved with the use of cone-shaped solid ceramics instead of flat ceramics. The comparison between measured potentials by polymer tensiometers and indirectly obtained potentials with time domain reflectometry highlights the risk of using the latter method at low water contents. By combining POT and time domain reflectometry readings in situ moisture retention curves can be measured over the range permitted by the measurement range of both POT and time domain reflectometry
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Recommended from our members
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries.
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector
Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge’s flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods
Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning
Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain-based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto-striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data
Structural Brain Correlates of Childhood Inhibited Temperament: An ENIGMA-Anxiety Mega-analysis
Temperament involves stable behavioral and emotional tendencies that differ between individuals, which can be first observed in infancy or early childhood and relate to behavior in many contexts and over many years.1 One of the most rigorously characterized temperament classifications relates to the tendency of individuals to avoid the unfamiliar and to withdraw from unfamiliar people, objects, and unexpected events. This temperament is referred to as behavioral inhibition or inhibited temperament (IT).2 IT is a moderately heritable trait1 that can be measured in multiple species.3 In humans, levels of IT can be quantified from the first year of life through direct behavioral observations or reports by caregivers or teachers. Similar approaches as well as self-report questionnaires on current and/or retrospective levels of IT1 can be used later in life
Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group
The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology
The feasibility of folate receptor alpha- and HER2-targeted intraoperative fluorescence-guided cytoreductive surgery in women with epithelial ovarian cancer: A systematic review
Background: Epithelial ovarian cancer (EOC) is often diagnosed late, with a 5-year relative survival of 30.2% for patients with metastatic disease. Residual disease following cytoreductive surgery is an important predictor for poor survival. EOC is characterized by diffuse peritoneal metastases and depositions of small size, challenging a complete resection. Targeted fluorescence imaging is a technique to enhance tumor visualization and can be performed intraoperatively. Folate receptor alpha (FRα) and human epidermal growth factor receptor 2 (HER2) are overexpressed in EOC in 80% and 20% of the cases, respectively, and have been previously studied as a target for intraoperative imaging. Objective: To systematically review the literature on the feasibility of FRα and HER2 targeted fluorescence-guided cytoreductive surgery (FGCS) in women with EOC. Methods: PubMed and Embase were searched for human and animal studies on FGCS targeting either HER2 or FRα in either women with EOC or animal models of EOC. Risk of bias and methodological quality were assessed with the SYRCLE and MINORS tool, respectively. Results: All animal studies targeting either FRα or HER2 were able to detect tumor deposits using intraoperative fluorescence imaging. One animal study targeting HER2 compared conventional cytoreductive surgery (CCS) to FGCS and concluded that FGCS, either without or following CCS, resulted in statistically significant less residual disease compared to CCS alone. Human studies on FGCS showed an increased detection rate of tumor deposits. True positives ranged between 75%–77% and false positives between 10%–25%. Lymph nodes were the main source of false positive results. Sensitivity was 85.9%, though only reported by one human study. Conclusion: FGCS targeting either HER2 or FRα appears to be feasible in both EOC animal models and patients with EOC. FGCS is a promising technique, but further research is warranted to validate these results and particularly study the survival benefit
- …
