138 research outputs found
Qubit-Initialisation and Readout with Finite Coherent Amplitudes in Cavity QED
We consider a unitary transfer of an arbitrary state of a two-level atomic
qubit in a cavity to the finite amplitude coherent state cavity field. Such
transfer can be used to either provide an effective readout measurement on the
atom by a subsequent measurement on the light field or as a method for
initializing a fixed atomic state - a so-called "attractor state", studied
previously for the case of an infinitely strong cavity field. We show that with
a suitable adjustment of the coherent amplitude and evolution time the qubit
transfers all its information to the field, attaining a selected state of high
purity irrespectively of the initial state.Comment: 6 pages, 4 figure
Solving ptychography with a convex relaxation
Ptychography is a powerful computational imaging technique that transforms a
collection of low-resolution images into a high-resolution sample
reconstruction. Unfortunately, algorithms that are currently used to solve this
reconstruction problem lack stability, robustness, and theoretical guarantees.
Recently, convex optimization algorithms have improved the accuracy and
reliability of several related reconstruction efforts. This paper proposes a
convex formulation of the ptychography problem. This formulation has no local
minima, it can be solved using a wide range of algorithms, it can incorporate
appropriate noise models, and it can include multiple a priori constraints. The
paper considers a specific algorithm, based on low-rank factorization, whose
runtime and memory usage are near-linear in the size of the output image.
Experiments demonstrate that this approach offers a 25% lower background
variance on average than alternating projections, the current standard
algorithm for ptychographic reconstruction.Comment: 8 pages, 8 figure
Analysis and modeling of an ultrasound-modulated guide star to increase the depth of focusing in a turbid medium
The effects of strong scattering in tissue limit the depth to which light may be focused. However, it has been shown that scattering may be reduced utilizing adaptive optics with a focused ultrasound (US) beam guidestar. The optical signal traveling through the US beam waist is frequency shifted and may be isolated with demodulation. This paper utilizes a multiphysics simulation to model the optical and US interactions in both synthetic tissue and random scattering media. The results illustrate that optical energy may be focused within a turbid medium utilizing a US guidestar. The results also suggest that optical energy travels preferentially along optical channels within a turbid medium
Diffusion model for ultrasound-modulated light
Researchers use ultrasound (US) to modulate diffusive light in a highly scattering medium like tissue. This paper analyzes the US–optical interaction in the scattering medium and derives an expression for the US-modulated optical radiance. The diffusion approximation to the radiative transport equation is employed to develop a Green’s function for US-modulated light. The predicted modulated fluence and flux are verified using finite-difference time-domain simulations. The Green’s function is then utilized to illustrate the modulated reflectance as the US–optical interaction increases in depth. The intent of this paper is to focus on high US frequencies necessary for high-resolution imaging because they are of interest for applications such as phase conjugation
A model for ultrasound modulated light in a turbid medium
The ability to focus light in most tissue degrades quickly with depth due to high optical scattering. Researchers have investigated using both ultrasound (US) and light synergistically to overcome this difficulty. Ultrasound has been utilized to modulated light within tissue to create a diffusive wave at that is modulated at the US frequency. Recently, there has been interest in the modulated sidebands which reside at optical frequency plus or minus the US frequency. This paper will discuss a model for US-light interactions in a scattering medium. We will use this model to relate the radiance in the probe beam to the radiance in the diffusive wave. We will then employ the P-1 approximation to the radiative transport equation to find the fluence and flux of the modulated wave. We will use these parameters to write a diffusion equation for the modulated wave that can be described in terms of the incoming optical power, and the US intensity and geometry
High-resolution geophysical surveying at the Springfield Fault, New Zealand
To trace the active Springfield Fault (South Island, New Zealand) and map its character at
shallow depths on a terrace where it exhibits no surface expression, we recorded 3-D georadar
data across an approximately rectangular 110 x 40 m survey area. In addition, we carried out
multi-electrode geoelectric measurements along a 198 m long profile that crossed the
georadar survey area. Although the georadar depth penetration was limited to only ~5 m, the
processed images revealed the presence of a prominent reflecting horizon disrupted by three
main discontinuities. Semi-continuous subhorizontal reflection patterns were interpreted to
represent sedimentary units within the fluvial deposits, whereas three detected discontinuities
were interpreted as fault traces with small near-vertical offsets (~0.4 m). This interpretation
was supported by vertical and lateral changes visible on the final inverted resistivity model
indicating lithological boundaries and fault branches
C/C ratio in planetary nebulae from the IUE archives
We investigated the abundance ratio of C/C in planetary nebulae
by examining emission lines arising from \ion{C}{3} 2s2p ^3P_{2,1,0} \to 2s^2
^1S_0. Spectra were retrieved from the International Ultraviolet Explorer
archives, and multiple spectra of the same object were coadded to achieve
improved signal-to-noise. The C hyperfine structure line at 1909.6 \AA
was detected in NGC 2440. The C/C ratio was found to be
1.2. In all other objects, we provide an upper limit for the flux
of the 1910 \AA line. For 23 of these sources, a lower limit for the
C/C ratio was established. The impact on our current
understanding of stellar evolution is discussed.
The resulting high signal-to-noise \ion{C}{3} spectrum helps constrain the
atomic physics of the line formation process. Some objects have the measured
1907/1909 flux ratio outside the low-electron density theoretical limit for
C. A mixture of C with C helps to close the gap somewhat.
Nevertheless, some observed 1907/1909 flux ratios still appear too high to
conform to the presently predicted limits. It is shown that this limit, as well
as the 1910/1909 flux ratio, are predominantly influenced by using the standard
partitioning among the collision strengths for the multiplet --
according to the statistical weights. A detailed calculation for the fine
structure collision strengths between these individual levels would be
valuable.Comment: ApJ accepted: 19 pages, 3 Figures, 2 Table
Super Weyl invariance: BPS equations from heterotic worldsheets
It is well-known that the beta functions on a string worldsheet correspond to
the target space equations of motion, e.g. the Einstein equations. We show that
the BPS equations, i.e. the conditions of vanishing supersymmetry variations of
the space-time fermions, can be directly derived from the worldsheet. To this
end we consider the RNS-formulation of the heterotic string with (2,0)
supersymmetry, which describes a complex torsion target space that supports a
holomorphic vector bundle. After a detailed account of its quantization and
renormalization, we establish that the cancellation of the Weyl anomaly
combined with (2,0) finiteness implies the heterotic BPS conditions: At the one
loop level the geometry is required to be conformally balanced and the gauge
background has to satisfy the Hermitean Yang-Mills equations.Comment: 1+31 pages LaTeX, 5 figures; final version, discussion relation Weyl
invariance and (2,0) finiteness extended, typos correcte
Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)
Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm
- …
