18 research outputs found

    Multi-scale freeform surface texture filtering using a mesh relaxation scheme

    Get PDF
    Surface filtering algorithms using Fourier, Gaussian, wavelets, etc, are well-established for simple Euclidean geometries. However, these filtration techniques cannot be applied to today's complex freeform surfaces, which have non-Euclidean geometries, without distortion of the results. This paper proposes a new multi-scale filtering algorithm for freeform surfaces that are represented by triangular meshes based on a mesh relaxation scheme. The proposed algorithm is capable of decomposing a freeform surface into different scales and separating surface roughness, waviness and form from each other, as will be demonstrated throughout the paper. Results of applying the proposed algorithm to computer-generated as well as real surfaces are represented and compared with a lifting wavelet filtering algorithm

    Multiresolution feature extraction for unstructured meshes

    No full text

    Multiscale Analysis of Metal Oxide Nanoparticles in Tissue: Insights into Biodistribution and Biotransformation.

    Get PDF
    Metal oxide nanoparticles have emerged as exceptionally potent biomedical sensors and actuators due to their unique physicochemical features. Despite fascinating achievements, the current limited understanding of the molecular interplay between nanoparticles and the surrounding tissue remains a major obstacle in the rationalized development of nanomedicines, which is reflected in their poor clinical approval rate. This work reports on the nanoscopic characterization of inorganic nanoparticles in tissue by the example of complex metal oxide nanoparticle hybrids consisting of crystalline cerium oxide and the biodegradable ceramic bioglass. A validated analytical method based on semiquantitative X-ray fluorescence and inductively coupled plasma spectrometry is used to assess nanoparticle biodistribution following intravenous and topical application. Then, a correlative multiscale analytical cascade based on a combination of microscopy and spectroscopy techniques shows that the topically applied hybrid nanoparticles remain at the initial site and are preferentially taken up into macrophages, form apatite on their surface, and lead to increased accumulation of lipids in their surroundings. Taken together, this work displays how modern analytical techniques can be harnessed to gain unprecedented insights into the biodistribution and biotransformation of complex inorganic nanoparticles. Such nanoscopic characterization is imperative for the rationalized engineering of safe and efficacious nanoparticle-based systems

    Ridge-Valley Lines on Meshes via Implicit Surface Fitting

    No full text
    We propose a simple and effective method for detecting view- and scale-independent ridge-valley lines defined via first- and secondorder curvature derivatives on shapes approximated by dense triangle meshes. A high-quality estimation of high-order surface derivatives is achieved by combining multi-level implicit surface fitting and finite difference approximations. We demonstrate that the ridges and valleys are geometrically and perceptually salient surface features and, therefore, can be potentially used for shape recognition, coding, and quality evaluation purposes
    corecore