8,246 research outputs found
The Fast Wandering of Slow Birds
I study a single "slow" bird moving with a flock of birds of a different, and
faster (or slower) species. I find that every "species" of flocker has a
characteristic speed , where is the mean speed of the
flock, such that, if the speed of the "slow" bird equals , it
will randomly wander transverse to the mean direction of flock motion far
faster than the other birds will: its mean-squared transverse displacement will
grow in with time like , in contrast to for the
other birds. In , the slow bird's mean squared transverse displacement
grows like , in contrast to for the other birds. If , the mean-squared displacement of the "slow" bird crosses over from
to scaling in , and from to scaling in
, at a time that scales according to .Comment: 10 pages; 5 pages of which did not appear in earlier versions, but
were added in response to referee's suggestion
Searching for t-bar t Resonances at the Large Hadron Collider
Many new physics models predict resonances with masses in the TeV range which
decay into a pair of top quarks. With its large cross section, t-bar t
production at the Large Hadron Collider (LHC) offers an excellent opportunity
to search for such particles. We present a detailed study of the discovery
potential of the CERN Large Hadron Collider for Kaluza-Klein (KK) excitations
of the gluon in bulk Randall-Sundrum (RS) models in the t-bar t -> ell^+/- nu
b-bar bq-bar q' (ell=e, mu) final state. We utilize final states with one or
two tagged b-quarks, and two, three or four jets (including b-jets). Our
calculations take into account the finite resolution of detectors, the energy
loss due to b-quark decays, the expected reduced b-tagging efficiency at large
t-bar t invariant masses, and include the background originating from Wb-bar
b+jets, (Wb+W-bar b)+jets, W+jets, and single top + jets production. We derive
semi-realistic 5 sigma discovery limits for nine different KK gluon scenarios,
and compare them with those for KK gravitons, and a Z_H boson in the Littlest
Higgs model. We also analyze the capabilities of the LHC experiments to
differentiate between individual KK gluon models and measure the couplings of
KK gluons to quarks. We find that, for the parameters and models chosen, KK
gluons with masses up to about 4 TeV can be discovered at the LHC. The ability
of the LHC to discriminate between different bulk RS models, and to measure the
couplings of the KK gluons is found to be highly model dependent.Comment: revtex3, 27 pages, 5 tables, 6 figure
Simulating anthropogenic impacts to bird communities in tropical rain forests
We used an aggregated modelling approach to simulate the impacts ofanthropogenic disturbances on the long-term dynamics of faunal diversityin tropical rain forests. We restricted our study to bird communities eventhough the approach is more general. We developed a model calledBIODIV which simulated the establishment of hypothetical bird speciesin a forest. Our model was based on the results of a simple matrix modelwhich calculated the spatio-temporal dynamics of a tropical rain forest inMalaysia. We analysed the establishment of bird species in a secondaryforest succession and the impacts of 60 different logging scenarios on thediversity of the bird community. Of the three logging parameters(cycle length, method, intensity), logging intensity had the most servereimpact on the bird community. In the worst case the number of bird specieswas reduced to 23% of the species richness found in a primary forest
Tuning the electrical conductivity of Pt-containing granular metals by postgrowth electron irradiation
We have fabricated Pt-containing granular metals by focused electron beam
induced deposition from the precursor gas. The granular
metals are made of platinum nanocrystallites embedded in a carbonaceous matrix.
We have exposed the as-grown nanocomposites to low energy electron beam
irradiation and we have measured the electrical conductivity as a function of
the irradiation dose. Postgrowth electron beam irradiation transforms the
matrix microstructure and thus the strength of the tunneling coupling between
Pt nanocrystallites. For as-grown samples (weak tunnel coupling regime) we find
that the temperature dependence of the electrical conductivity follows the
stretched exponential behavior characteristic of the correlated variable-range
hopping transport regime. For briefly irradiated samples (strong tunnel
coupling regime) the electrical conductivity is tuned across the
metal-insulator transition. For long-time irradiated samples the electrical
conductivity behaves like that of a metal. In order to further analyze changes
of the microstructure as a function of the electron irradiation dose we have
carried out transmission electron microscope (TEM), micro-Raman and atomic
force microscopy (AFM) investigations. TEM pictures reveal that the
crystallites' size of long-time irradiated samples is larger than that of
as-grown samples. Furthermore we do not have evidence of microstructural
changes in briefly irradiated samples. By means of micro-Raman we find that by
increasing the irradiation dose the matrix changes following a graphitization
trajectory between amorphous carbon and nanocrystalline graphite. Finally, by
means of AFM measurements we observe a reduction of the volume of the samples
with increasing irradiation time which we attribute to the removal of carbon
molecules
Microbiological indicators of water quality in submerged karst caves of Wakulla Springs
22 slides in Powerpoint presentation
A Reanalysis of the Hydrodynamic Theory of Fluid, Polar-Ordered Flocks
I reanalyze the hydrodynamic theory of fluid, polar ordered flocks. I find
new linear terms in the hydrodynamic equations which slightly modify the
anisotropy, but not the scaling, of the damping of sound modes. I also find
that the nonlinearities allowed {\it in equilibrium} do not stabilize long
ranged order in spatial dimensions ; in accord with the Mermin-Wagner
theorem. Nonequilibrium nonlinearities {\it do} stabilize long ranged order in
, as argued by earlier work. Some of these were missed by earlier work; it
is unclear whether or not they change the scaling exponents in .Comment: 6 pages, no figures. arXiv admin note: text overlap with
arXiv:0909.195
Analyzing the Fierz Rearrangement Freedom for Local Chiral Two-Nucleon Potentials
Chiral effective field theory is a framework to derive systematic nuclear
interactions. It is based on the symmetries of quantum chromodynamics and
includes long-range pion physics explicitly, while shorter-range physics is
expanded in a general operator basis. The number of low-energy couplings at a
particular order in the expansion can be reduced by exploiting the fact that
nucleons are fermions and therefore obey the Pauli exclusion principle. The
antisymmetry permits the selection of a subset of the allowed contact operators
at a given order. When local regulators are used for these short-range
interactions, however, this "Fierz rearrangement freedom" is violated. In this
paper, we investigate the impact of this violation at leading order (LO) in the
chiral expansion. We construct LO and next-to-leading order (NLO) potentials
for all possible LO-operator pairs and study their reproduction of phase
shifts, the He ground-state energy, and the neutron-matter energy at
different densities. We demonstrate that the Fierz rearrangement freedom is
partially restored at NLO where subleading contact interactions enter. We also
discuss implications for local chiral three-nucleon interactions.Comment: 11 pages, 5 figure
- …
