56 research outputs found

    The provocative lumbar facet joint

    Get PDF
    Low back pain is the most common pain symptom experienced by American adults and is the second most common reason for primary care physician visits. There are many structures in the lumbar spine that can serve as pain generators and often the etiology of low back pain is multifactorial. However, the facet joint has been increasingly recognized as an important cause of low back pain. Facet joint pain can be diagnosed with local anesthetic blocks of the medial branches or of the facet joints themselves. Subsequent radiofrequency lesioning of the medial branches can provide more long-term pain relief. Despite some of the pitfalls associated with facet joint blocks, they have been shown to be valid, safe, and reliable as a diagnostic tool. Medial branch denervation has shown some promise for the sustained control of lumbar facet joint-mediated pain, but at this time, there is insufficient evidence that it is a wholly efficacious treatment option. Developing a universal algorithm for evaluating facet joint-mediated pain and standard procedural techniques may facilitate the performance of larger outcome studies. This review article provides an overview of the anatomy, pathophysiology, diagnosis, and treatment of facet joint-mediated pain

    A theoretical model for the development of a diagnosis-based clinical decision rule for the management of patients with spinal pain

    Get PDF

    Ultrafast transformation of graphite to diamond: An ab initio study of graphite under shock compression

    Full text link
    We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12km/s (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond

    Sterilization of joint replacement materials

    Full text link

    Sterilization of joint replacement materials

    No full text

    Engineering analysis of cardiac electrical activity in response to calmodulin mutations

    No full text
    corecore