1,528 research outputs found
Two-band superfluidity from the BCS to the BEC limit
We analyze the evolution of two-band superfluidity from the weak coupling
Bardeen-Cooper-Schrieffer (BCS) to the strong coupling Bose-Einstein
condensation (BEC) limit. When the interband interaction is tuned from negative
to positive values, a quantum phase transition occurs from a 0-phase to a
-phase state, depending on the relative phase of two order parameters.
Furthermore, population imbalances between the two bands can be created by
tuning the intraband or interband interactions. We also find two undamped low
energy collective excitations corresponding to in-phase and out-of-phase modes.
Lastly, we derive the coupled Ginzburg-Landau equations, and show that they
reduce to coupled Gross-Pitaevskii equations for two types of bosons in the BEC
limit.Comment: 4 pages and 3 figure
Regulation of nitric oxide signaling by formation of a distal receptor-ligand complex.
The binding of nitric oxide (NO) to the heme cofactor of heme-nitric oxide/oxygen binding (H-NOX) proteins can lead to the dissociation of the heme-ligating histidine residue and yield a five-coordinate nitrosyl complex, an important step for NO-dependent signaling. In the five-coordinate nitrosyl complex, NO can reside on either the distal or proximal side of the heme, which could have a profound influence over the lifetime of the in vivo signal. To investigate this central molecular question, we characterized the Shewanella oneidensis H-NOX (So H-NOX)-NO complex biophysically under limiting and excess NO conditions. The results show that So H-NOX preferably forms a distal NO species with both limiting and excess NO. Therefore, signal strength and complex lifetime in vivo will be dictated by the dissociation rate of NO from the distal complex and the rebinding of the histidine ligand to the heme
BCS-BEC crossover of collective excitations in two-band superfluids
We use the functional integral approach to study low energy collective
excitations in a continuum model of neutral two-band superfluids at T=0 for all
couplings with a separable pairing interaction. In the long wavelength and low
frequency limit, we recover Leggett's analytical results in weak coupling (BCS)
for s-wave pairing, and further obtain analytical results in strong coupling
(BEC) for both two and three dimensional systems. We also analyse numerically
the behavior of the out-of-phase {\it exciton} (finite frequency) mode and the
in-phase {\it phonon} (Goldstone) mode from weak to strong coupling limits,
including the crossover region. In principle, the evolution of Goldstone and
finite frequency modes from weak to strong coupling may be accessible
experimentally in the superfluid phase of neutral Fermi atomic gases, and could
serve as a test of the validity of the theoretical analysis and approximations
proposed here.Comment: 14 pages, 9 figures. Submitted to PR
(Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor.
UnlabelledThe pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2(-)), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms.ImportanceS. selenatireducens CUZ and D. chlorophilus NSS are (per)chlorate- and chlorate-reducing bacteria, respectively, whose genomes encode both anaerobic and aerobic-hybrid pathways for the degradation of phenylacetate and benzoate. Previous studies have shown that (per)chlorate-reducing bacteria and chlorate-reducing bacteria (CRB) can use aerobic pathways to oxidize aromatic compounds in otherwise anoxic environments by capturing the oxygen produced from chlorite dismutation. In contrast, we demonstrate that S. selenatireducens CUZ is the first perchlorate reducer known to utilize anaerobic aromatic degradation pathways with perchlorate as an electron acceptor and that it does so in preference over the aerobic-hybrid pathways, regardless of any oxygen produced from chlorite dismutation. D. chlorophilus NSS, on the other hand, may be carrying out anaerobic and aerobic-hybrid processes simultaneously. Concurrent use of anaerobic and aerobic pathways has not been previously reported for other CRB or any microorganisms that encode similar pathways of phenylacetate or benzoate degradation and may be advantageous in low-oxygen environments
Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1.
UnlabelledDespite evidence for the prevalence of horizontal gene transfer of respiratory genes, little is known about how pathways functionally integrate within new hosts. One example of a mobile respiratory metabolism is bacterial chlorate reduction, which is frequently encoded on composite transposons. This implies that the essential components of the metabolism are encoded on these mobile elements. To test this, we heterologously expressed genes for chlorate reduction from Shewanella algae ACDC in the non-chlorate-reducing Shewanella oneidensis MR-1. The construct that ultimately endowed robust growth on chlorate included cld, a cytochrome c gene, clrABDC, and two genes of unknown function. Although strain MR-1 was unable to grow on chlorate after initial insertion of these genes into the chromosome, 11 derived strains capable of chlorate respiration were obtained through adaptive evolution. Genome resequencing indicated that all of the evolved chlorate-reducing strains replicated a large genomic region containing chlorate reduction genes. Contraction in copy number and loss of the ability to reduce chlorate were also observed, indicating that this phenomenon was extremely dynamic. Although most strains contained more than six copies of the replicated region, a single strain with less duplication also grew rapidly. This strain contained three additional mutations that we hypothesized compensated for the low copy number. We remade the mutations combinatorially in the unevolved strain and determined that a single nucleotide polymorphism (SNP) upstream of cld enabled growth on chlorate and was epistatic to a second base pair change in the NarP binding sequence between narQP and nrfA that enhanced growth.ImportanceThe ability of chlorate reduction composite transposons to form functional metabolisms after transfer to a new host is an important part of their propagation. To study this phenomenon, we engineered Shewanella oneidensis MR-1 into a chlorate reducer. We defined a set of genes sufficient to endow growth on chlorate from a plasmid, but found that chromosomal insertion of these genes was nonfunctional. Evolution of this inoperative strain into a chlorate reducer showed that tandem duplication was a dominant mechanism of activation. While copy number changes are a relatively rapid way of increasing gene dosage, replicating almost 1 megabase of extra DNA is costly. Mutations that alleviate the need for high copy number are expected to arise and eventually predominate, and we identified a single nucleotide polymorphism (SNP) that relieved the copy number requirement. This study uses both rational and evolutionary approaches to gain insight into the evolution of a fascinating respiratory metabolism
Transverse instabilities of multiple vortex chains in superconductor-ferromagnet bilayers
Using scanning tunneling microscopy and Ginzburg-Landau simulations we
explore vortex configurations in magnetically coupled NbSe-Permalloy
superconductor-ferromagnet bilayer. The Permalloy film with stripe domain
structure induces periodic local magnetic induction in the superconductor
creating a series of pinning-antipinning channels for externally added magnetic
flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays
(chains). The transitions between multichain states occur through propagation
of kinks at the intermediate fields. At high fields we show that the system
becomes non-linear due to a change in both the number of vortices and the
confining potential. The longitudinal instabilities of the resulting vortex
structures lead to vortices `levitating' in the anti-pinning channels.Comment: accepted in PRB-Rapid
Influence of Topological Edge States on the Properties of Al/Bi2Se3/Al Hybrid Josephson Devices
In superconductor-topological insulator-superconductor hybrid junctions, the
barrier edge states are expected to be protected against backscattering, to
generate unconventional proximity effects, and, possibly, to signal the
presence of Majorana fermions. The standards of proximity modes for these types
of structures have to be settled for a neat identification of possible new
entities. Through a systematic and complete set of measurements of the
Josephson properties we find evidence of ballistic transport in coplanar
Al-Bi2Se3-Al junctions that we attribute to a coherent transport through the
topological edge state. The shunting effect of the bulk only influences the
normal transport. This behavior, which can be considered to some extent
universal, is fairly independent of the specific features of superconducting
electrodes. A comparative study of Shubnikov - de Haas oscillations and
Scanning Tunneling Spectroscopy gave an experimental signature compatible with
a two dimensional electron transport channel with a Dirac dispersion relation.
A reduction of the size of the Bi2Se3 flakes to the nanoscale is an unavoidable
step to drive Josephson junctions in the proper regime to detect possible
distinctive features of Majorana fermions.Comment: 11 pages, 14 figure
Vortex Imaging in the pi-Band of Magnesium Diboride
We report scanning tunneling spectroscopy imaging of the vortex lattice in
single crystalline MgB2. By tunneling parallel to the c-axis, a single
superconducting gap (Delta = 2.2 meV) associated with the pi-band is observed.
The vortices in the pi-band have a large core size compared to estimates based
on Hc2, and show an absence of localized states in the core. Furthermore,
superconductivity between the vortices is rapidly suppressed by an applied
field. These results suggest that superconductivity in the pi-band is, at least
partially, induced by the intrinsically superconducting sigma-band.Comment: 4 pages, 3 figure
- …
